「中点連結定理」とは？

三角形の中点連結定理の証明をわかりやすく解説

中点連結定理とは

「中点連結定理」とは，「三角形と比の定理」の少し特殊なバージョンだと思っておけば OKだよ。

名前の通り「中点」を「連結」させたときの性質のことだよ。
ちなみに，図形の中点を連結させたときの定理なので，今回紹介する三角形以外の図形 （たとえば平行四辺形など）でも，この中点連結定理があるよ。

それでは三角形の中点連結定理について学習しよう。

三角形の場合，中点連結定理とは，下のような三角形で中点DとEを結ぶと，DE／／BC， $D E: B C=1: 2$ になるという定理だよ。

ざっくり説明すると，三角形の 2 つの辺のそれぞれ真ん中になる点をとって，その点どう しを結ぶと，結んだ辺と三角形の底辺は平行になる，ということだね。

さらに，その辺と三角形の底辺の比は，1：2 になるんだね。

教科書には次のように載っているよ。
中点連結定理
－$\triangle A B C$ の中点をD，Eとすると，
－DE／／BC，DE＝1 $2 B C$

中点連結定理の練習問題

中点連結定理を使う問題では，辺の長さを求める問題がよく出るよ。

問題 次の図で，×の長さを求めなさい。

D は辺 $A B$ の中点，Eも辺 $A C$ の中点だから，DとEを連結すると，中点連結定理が使える ね。

ということは辺DEと底辺BCの比は，1：2 になるね。
なので，辺DEは底辺BC $\times \frac{1}{2}$ で求めることができるね。
$D E=\frac{1}{2} B C$
$D E=\frac{1}{2} \times 8$
$D E=4$
辺DEの長さは4cmと求めることができたね。

中間連結定理の証明問題

それでは，そもそもなぜ中点連結定理が成り立つのか考えてみよう。

中点連結定理とは次のような定理だったね。

中点連結定理
－$\triangle A B C$ の中点を $D, ~ E と す る と, ~$
－DE／／BC，DE $=\frac{1}{2} B C$

中点連結定理は，中点どうしを結んだ辺と底辺が「平行になること」と，中点どうしを結 んだ辺が底辺の「 $\frac{1}{2}$ になること」の 2 つに分かれているので，それぞれひとつずつ順番に証明していくよ。

中点どうしを結んだ辺と底辺が平行になることの証明

三角形の 2 辺の中点で連結すると，$\triangle A D E と \triangle A B C は$ 相似になるよ。

なぜかというと，$\angle A$ は共通で $A D: A B=A E: A C=1: 2$ になって，相似条件の「2組 の辺の比とその間の角がそれぞれ等しい」を満たすからだね。

$\triangle \mathrm{ADE}$ と $\triangle \mathrm{ABC}$ が相似だということは，対応する角が等しくなるから $\angle A D E=\angle B$ になるよね。

緑丸の位置は同位角の位置で，同位角の $\angle A D E=\angle B$ が等しくなるということは，平行線の性質 によりDEとBCは平行になることがわかるね。

これで，「中点どうしを結んだ辺と底辺が平行になること」の証明ができたね。

中点どうしを結んだ辺は底辺の $\frac{1}{2}$ になることの証明

青（ $\triangle A D E)$ と赤（ $\triangle A B C$ ）の三角形は相似になるんだったよね。

2つの三角形をわけて考えてみよう。

点Dは辺 $A B$ の中点，点 E は辺 $A C$ の中点だから，$A D: A B=A E: A C=1: 2$ になっているよね。

相似な図形の性質を思い出してみよう。

相似な図形の性質

相似な図形の対応する辺の長さの比はそれぞれ等しい

ということは，$\triangle \mathrm{ADE}$ と $\triangle \mathrm{ABC}$ は相似な図形なので，対応する辺の長さの比はそれぞれ等しいとい うことだね。
$A D: A B=A E: A C=1: 2$ なのだから，残ったDE：BCの長さの比も1：2になるということだよね。

これで，「中点どうしを結んだ辺は底辺の $\frac{1}{2}$ になること」の証明ができたね。

