「縮図の利用」縮図を使う木の高さの求め方は？問題の解き方を解説

縮図を使って木の高さを求める問題

下の図は，花子さんが木から 10 m 離れたところに立って，木のてっぺんを見上げている様子を表しています。

木の高さは何mですか。

実際に木の高さを測るのは大変だよね。
いちいち，「はしご」を持ってくるのもめんどうだしね。

そんなとき「縮図」を使えば簡単に高さを求めることができるんだ。

STEPI 図を簡単に書こう。

上の図をもっと簡単に書いてみると次のようになるよね。

（今回の計算で大事なところは目線より上のところだから，下の部分と木は消しているよ。）

STEP2 縮図を書くために縮尺を決めよう。

「縮図」とは，実物よりも大きさを小さくした図のことだったよね。 そして「縮尺」とは，どのくらい小さくするかを表すことばだったね。 ※「縮尺」についてよくわからなかったら，縮尺について解説しているペー ジを確認しよう。

どのくらい小さく書くかはノートの大きさ次第って感じかな。
例えば，$\frac{1}{10}$ の縮図を書くとすると，
人と木の距離は1 $0 \mathrm{~m} \times \frac{1}{10}=1 \mathrm{~m}$ になるね。 I mはノートに書くことができないから， もっと縮小する必要があるよね。

なので今回は $\frac{1}{100}$ の縮図を書くことにしよう。

STEP3 縮図を書こう

縮図を書くときには，定規と分度器が必要になるから準備しておこう。

10 m を $\frac{1}{100}$ にすると， $10 \mathrm{~m} \times \frac{1}{100}=0.1 \mathrm{~m}$ 。
0．1mとは10cmのことだから，
三角形の底辺は10cmになるよ。

縮図の書き方
（1） 10 cm の底辺を書く
（2）分度器で 40° を測る

拡大図•縮図では，角度は変らないから，元の図形と同じ 40° だよ。
（3）分度器で 90° を測る

木は地面に 90° で生えているから 90° を分度器で測るよ。

縮図と実際の長さの図を並べてみると次のようになるよ。単位が違うことに注意しよう。

STEP4 縮図の高さを定規で測ってみよう

縮図の三角形の高さを定規で測ると 8．4．cmになるよ。

STEP5 実際の三角形の高さを求めよう

縮尺は $\frac{1}{100}$ だったよね。
実際の長さを $\frac{1}{100}$ したら縮図の長さになるということだね。

今度は縮図の長さをもとに，実際の長さをしりたいので，これを反対に考え てみよう。

縮図の長さを100倍したら実際の長さになるから，
縮図の 8.4 cm は，実際の $8.4 \times 100=8400 \mathrm{~cm}$ ということ。

8400 cm というのは 8.4 m のことだから，
実際の高さは 8.4 m と求めることができるよ。

STEP6 木の高さを求めよう

最初の図に，今回わかった 8.4 m を書き入れてみよう。

ここで注意。
答えを「木の高さは8．4m」としてしまったら間違いだよ。

上の図をみてわかるとおり，さっき求めた高さに人の目線の高さを足さない といけないよね。

だから8．4に1．5を足すよ。
$8.4+1.5=9.9$

木の高さは 9.9 m と求めることができるね。

縮図を使って建物の高さを求める問題

下の図は，花子さんがある建物から 20 m 離れたところに立って，建物の上のはしを見上げている様子を表しています。

建物の高さは何mですか。

さっきの「木の高さを求める問題」と解き方は全く同じ。 だから復習しながら答えを求めてみよう。

STEPI図を簡単に書こう。

上の図をもっと簡単に書いてみると次のようになるよね。
※今回の計算でも大事なところは目線より上のところだから，下の部分と建物は消しているよ。

STEP2 縮図を書くために縮尺を決めよう。

縮図は実物よりも大きさを小さくした図のことだったよね。
どのくらい小さく書くかはノートの大きさ次第。

例えば，$\frac{1}{10}$ の縮図を書くとすると，
人と建物の距離は $20 \mathrm{~m} \times \frac{1}{10}=2 \mathrm{~m}$ になるね。
2 m はノートに書くことができないから，
もっと縮小する必要があるよね。

今回は $\frac{1}{100}$ の縮図を書くことにしよう。

STEP3 縮図を書こう

20 m を $\frac{1}{100}$ にすると， $20 \mathrm{~m} \times \frac{1}{100}=0.2 \mathrm{~m}$ 。 0．2mとは 20 cm のことだから，三角形の底辺は20cmになるよ。

STEP4 縮図の高さを定規で測ってみよう

縮図の三角形の高さを定規で測ると
16.8 cm になるよ。

STEP5 実際の三角形の高さを求めよう

縮尺は $\frac{1}{100}$ だったよね。
実際の長さを $\frac{1}{100}$ したら縮図の長さになるということだね。
反対に考えよう。
縮図の長さを100倍したら実際の長さになるから，
縮図の 16.8 cm は，実際の $16.8 \times 100=16800 \mathrm{~cm}$ ということ。

16800 cm というのは16．8mのことだから，
実際の高さは16．8mと求めることができるよ。

STEP6建物の高さを求めよう

最初の図に，今回わかった16．8mを書き入れてみよう。

答えを「建物の高さは16．8m」としてしまったら間違いだったね。上の図をみてわかるとおり，人の目線の高さを足さないといけないよね。 だから16．8に1．5を足すよ。
$16.8+1.5=18.3$

建物の高さは18．3mと求めることができるね。

「縮図を利用した問題の解き方」まとめ

STEP1 問題文から，図を簡単に書こう
STEP 2 縮図を書くために縮尺を決めよう（例：$\frac{1}{100}$ ）
STPE3 決めた縮尺をもとに縮図を書こう

STEP4 縮図の長さ（求める部分）を実際に定規で測ってみよう
STEP5 測った長さから，実際の長さを求めよう（例：100倍）

STEP6 目線の高さなど，足さなければいけない長さを足そう

