「因数分解」とは？

因数分解の基本のやり方をわかりやすく解説

因数と素因数とは

「因数分解」について学習する前に，そもそも「因数（いんすう）」と「素因数（そいん すう）」とは何かを説明するよ。

1年生で「素因数分解（そいんすうぶんかい）」というのを学習したと思うからなんとな くイメージできるかな。
復習もかねて，2つの言葉の意味を簡単に説明するよ。

【因数】自然数を2つ以上の自然数の積で表したとき，その一つひとつのこと

【素因数】 因数のうち，素数である因数のこと
※「素数」つて何？と思ったら，素数について解説しているページを確認しよう。

具体的な数字で考えてみよう。

「30」って「5×6」とも表せるよね。

この5と6のことを「30の因数」っていうよ。

つまり，因数っていうのは「○× \triangle 」みたいになるときに○や \triangle のことだとイメージ出来 たらOK。

「因数」の「因」は，原因の「因」だよね。「因」という漢字は，「もと」という意味が あるんだ。
「その数を作っている＂もと＂」とイメージすると納得だよね。

30 をさらに細かく考えて， $2 \times 3 \times 5$ と表すと，2，3，5は素数だから，2，3，5 のことを30の素因数っていうんだ。

因数，素因数についてわかったところで，いよいよ今回の学習「因数分解」についての学習をやっていこう。

因数分解をしてみよう

「因数分解」とは，「展開の逆」だと思ってもらえたらOK。
「展開」については，多項式の乗法で学習したよね。
$(x+a)(x+b)$ みたいな形を展開してきたよね。

例えば次のような問題
$(x+2)(x+3)$
$=x 2+(2+3) x+2 \times 3$
$=x 2+5 x+6$

今までは，多項式の積（かけ算の状態）を展開するために，上から下に向かって計算をや ってきたけれど，因数分解は逆で，I番下の「展開された状態」から上の「もとの多項式 の積」を求めるんだ。

箱を開いて，中のものを広げて取り出すのが「展開」，
広げて出されているものをまた箱の中にしまっていくのが「因数分解」みたいなイメージ かな。

因数分解の「因」は「もとになるもの」だったよね。
つまり，$x 2+5 x+6$ という式の「もと」になった数や式を探し出す作業なんだね。 $x 2+5 x+6$ が「因数」である $(x+2)$ と $(x+3)$ という式に分解される，ということだね。

```
展開と因数分解のイメージ
(x+2)(x+3)=x2+5x+6
(x+2)(x+3)->x2+5x+6 展開
x2+5x+6 -> (x+2)(x+3) 因数分解
```

因数分解の問題は，実際にはこんな感じで出題されるよ。
（問題）$x 2+5 x+6$ を因数分解しなさい。
（答え）$(x+2)(x+3)$
展開の逆だと思ってもらったらOKなんだけど，教科書に書いてあるような文章では次の ようになっているよ。

因数分解とは

多項式をいくつかの因数の積として表すこと

つまり，多項式（項が 2 つ以上の式）「＋ $\mathbf{\Delta}+\cdots \cdot \cdot \cdot \cdot$ • 」のような形で表す ことを因数分解と呼ぶんだよ。

実際に問題をやっていけばイメージもできると思うよ。
それでは，因数分解の問題パターンをいくつか紹介していくね。

共通な因数でくくる因数分解

因数分解の問題の中で最も簡単なものを紹介するね。ただ，学習が進むにつれて，数学が得意な人も「あっ忘れてた」と間違える内容だから，しっかりやり方を覚えておこう。

1年生で次のような展開をやったよね。
$a(b+c)$
$=a b+a c$

簡単な因数分解は $a b+a c$ を $a(b+c)$ にする問題だよ。

そう聞くと簡単に感じるんじゃないかな。
$3 a b(b-c)$
$=3 a b 2-3 a b c$

この問題だったら，3ab2－3abcを3ab（b－c）にできればOK。

じゃあどうやってやるのかを説明するね。

共通な因数でくくる因数分解のやり方

簡単な因数分解の問題を解くのポイントは
「共通な因数でくくって，残りはかっこの中」
ということ。

例えば次のような問題を見てみよう。
（例）
$x y+x z$ を因数分解しなさい。

この式には「項」が2つあるよね。「項」つていうのは $O+O$ と表した時の O のことだっ たよね。
※「項」について自身がなかったら「項」について解説しているページを確認しよう。
$x y+x z$ の項は「xy」と「 $+x z$ 」。 2 つの項に共通しているものは「x」だよね。

ここで簡単な因数分解の問題を解くポイントを確認しよう。

「共通な因数でくくって，残りはかっこの中」
$x y+x z$ の共通な因数は「x」だったから，残りの「y＋z」はかっこの中に入れてみよう。
$x y+x z$
$=x(y+z)$

これで簡単な因数分解の完成だよ。心配だったら $x(y+z)$ を分配法則でかっこを外してみ てxy＋xzになるかを確認してみよう。
（問）
$a b 2-a b$ を因数分解しなさい。

この式には「項」が2つあるよね。
$a b 2-a b$ の項は「ab2」と「－ab」。2つの項に共通しているものは「ab」だよね。

$$
\begin{aligned}
& \text { えっどういうこと? と思ったら } \\
& a b 2=a \times b \times b \\
& -a b=-a \times b \\
& \rightarrow a \times b=a b \text { が共通している。 (共通な因数) }
\end{aligned}
$$

ここで簡単な因数分解の問題を解くポイントは

「共通な因数でくくって，残りはかっこの中」だったから，
$a b 2-a b の$ 共通な因数「ab」を取り除いた残りの「b－I」はかっこの中に入れてみよう。 $a b 2-a b$
$=a b(b-1)$

これで因数分解の完成だよ。心配だったら分配法則でかっこを外してみて確認してみよ う。

間違えやすい因数分解
$a b 2-a b$ の因数分解で「ab」が共通な因数だから「ab」でくくったら「ab2－ab」の後ろの「ab」がなくなるのでは？と感じる人がいるかもしれないけど違うよ。

もしそうだったら
ab2－ab
$=a b(b-0)$

みたいな式になって，展開して上の式にならなくなっちゃうよね。

最後に，項が 3 つの因数分解に挑戦してみよう。 2 つの時と考え方は同じだよ。
（問）
$6 a b-2 a c+4 a d$ を因数分解しなさい。

この式には「項」が3つあるよね。
6ab－2ac＋4adの項は「6ab」と「－2ac」と「＋4ad」。3つの項に共通しているものは「a」だと思うよね。ただそれだけじゃないよ。数字にも注目してみよう。

6，2，4ときたらピンと来るかもしれないけど，すべて2で割ることができるよね。

だから「2」も共通しているっていうことだよ。

まとめるとこんな感じ

$$
\begin{aligned}
& \cdot 6 a b=2 \times 3 \times a \times b \\
& \cdot-2 a c=-2 \times a \times c \\
& \cdot+4 a d=+2 \times 2 \times a \times d \\
& \rightarrow \text { 共通しているものは } 2 \times a=2 a \text { である (共通な因数は } 2 a \text {) }
\end{aligned}
$$

ここで簡単な因数分解の問題を解くポイントは

「共通な因数でくくって，残りはかっこの中」だったから，

6ab－2ac＋4adの共通な因数「2a」を取り除いた残りをかっこの中に入れてみよう。 パッとできない人は次のように考えよう。
（1）2aは取り除くから2a（）の形になる

②（）の中は残りもの
－ $6 a b=2 \times 3 \times a \times b$
－$-2 a c=-2 \times a \times c$
－$+4 a d=+2 \times 2 \times a \times d$
（3） $2 a(3 \times b-c+2 \times d)=2 a(3 b-c+2 d)$
$6 a b-2 a c+4 a d$ を因数分解すると
 みて上の式になっているかを確認したらよかったね。

