ある点から円への接線の作図の書き方を わかりやすく解説

ある点から円への接線を作図してみよう

これまで，円周角の定理を学習してきたけれど，「今度はいきなり接線？」と思った人も いるかもしれないね。

実は「円周角の定理」と「接線」には深い関係があるんだよ。 なんと「円周角の定理の逆」を知っていると，円への接線を簡単に書くことができるん だ。

まず，中1 で勉強した接線の復習をしていこう。

円への接線とは

「接線」とは，円と 1 点で接する直線のことだよ。

たとえば，下の図の赤い直線のように，「円の表面？にピッタリとくっついている」よう な直線だね。
もしもこの直線がもっと下（円の内側）にあったら，円と直線は 2 点で交わってしまう し，逆に上（円のもっと外側）にあったら，円と直線は交わらなくなってしまうよね。

だから1点で交わるというのがポイントなんだよ。この1点のことを「接点」と呼んだよね。

円への接線の性質

円への接線は，接する円の半径と垂直に交わるという性質があるよ。接線の性質は，円の半径と垂直に交わるということだよ。

接線とは
－円とI点（接点）で接する直線のこと

円への接線の性質
－円の半径と接線は垂直に交わる

ある点から円への接線を作図する方法

点Aから円Oへの接線を引いてみよう。

A
\bullet

なんとなく「円にピッタリ接していそうな直線」を感覚でも描けそうな気がするけど，もちろんそれで は正確な接線とは言えないよね。
拡大してみると，2点で交わっているかもしれないからね。

それでは，正確に書く方法を紹介するよ。

STEP1点Aと中心Oを結ぼう

STEP2 AOの垂直二等分線を描いて，AOの中点O＇を見つけよう

※垂直二等分線の描き方がわからない人は下を見て復習しよう。

（3）

STEP3 円の中心O＇からAまでを半径とした円を描く（円OとO‘が交わったところをP，P‘とする）

STEP4 点AとP，点AとQを結べば，円への接線が完成する

円への接線の作図ができる理由

どうしてこの方法で，円への接線が作図できるのだろう？

まずは，上の図で，赤線が本当に円Oの接線になっているのかを確かめよう。

接線は，半径と 90° で交わるという特徴があったよね。
だから，赤線と半径を結んだ線が 90° になることがわかったら，赤線は接線だと言えるよね。

OPを結んでできる角，$\angle A P O$ と，直径AOに注目してみよう。

直径と円周角の定理を使うと $\angle A P O$ は 90° になるよね。

直径と円周角の定理

線分 $A B$ を直径とする円の円周上に点 P を取ると，$\angle A P B=90^{\circ}$ になる

$\angle \mathrm{APO}=90^{\circ}$ になるということは，円Oの半径と赤線は 90° で交わるということだよね。 だから，赤線は円Oの接線だと言えるんだよ。

円外の1点から，その円にひいた2つの接線の長さ

円への接線の性質で大切なものを紹介するね。
円と接線の性質

円外のl点から，その円に引いた2つの接線の長さは等しくなる

つまり，AP＝AP＇になるということだよ。

なぜAPとAP＇が等しくなるのかを考えてみよう。

まず点Oと，PとP＇それぞれを結ぶ直線（半径OP，OP＇）を引こう。

そうすると出来上がる2つの三角形，$\triangle A O P と \triangle A O P^{\prime}$ は合同になるんだ。

合同になる理由
（1）AOは共通（重なっているよね）
（2）半径だからOPとOP،は等しいよね。
（3）接線と半径は 90° で交わるよね

（1）（2）（3）から，直角三角形の斜辺と他のl辺がそれぞれ等しいから
$\triangle A O P \equiv \triangle A O P$

合同だということは，2つの三角形はぴったりと重なるということだよね。

だからAPと重なるのは，AP＇になって（教科書の用語では「対応する辺の長さは等しい」と言うよ），AP＝AP＇ということがわかるね。

これで，「円外のI点から，その円に引いた2つの接線の長さは等しくなる」という性質が説明でき たね。

円と円への接線の性質

円外のI点から，その円に引いた2つの接線の長さは等しくなる

AP=AP'になるってことだよ。

