相似の利用「木の高さを求める」「縮図」の問題の解き方を徹底解説

相似の利用「木の高さを求める」問題

「相似の利用」の単元では，このように「木の高さを求める」問題がよく出題されるよ。相似な図形の性質を使って，木の高さを求める方法を説明するね。

公園にいる身長 1.7 m の人のかげの長さがlmのとき，同じ公園にある木のかげの長さが 5 m だった。この木の高さを求めよ。

木の高さを知りたいんだけれど，直接測ることができないとき，「かげ」を利用して，木の高さを求め られないかな？というわけだね。

木の高さを求める問題のポイントは

「高さ」と「かげ」を含む三角形はそれぞれみんな「相似になる」ということ。

実は「人の高さ」と「人のかげ」の先端を結んだ三角形と，「木の高さ」と「木のかげ」の先端を結 んだ三角形は相似になるんだ。

なぜかというと，木と人が同じ場所にいる場合，太陽の光の当たり方は同じになるからだよ。

相似になる理由

太陽の光は，平行に進むんだ。
そして太陽は，「人と木の距離」とは比べ物にならないくらい遠くにあるよね。ということは，人にも木 にも同じように光が当たっていると考えていいんだよ。

本当なら，光源からの光は放射状だけれど，
太陽と地球の距離のように，光源が無限に遠くにあるときは光線は平行であるとみなすよ。
そのため，地上にふりそそぐ太陽の光は平行と考えるんだ。

人のかげ
木のかげ

今回求めたいのは「木の高さ」だから，木の高さをxmと置いたよ。

ちなみに相似条件は「2組の角がそれぞれ等しい」
（1）人も木も地面に垂直に立っていると考える「 $\angle A=\angle E=90^{\circ}$ 」
（2）太陽の光線（赤線）は平行に当たっているので，「 $\angle C=\angle F 」$
（1）（2）から2組の角がそれぞれ等しいから，$\triangle A B C \backsim \triangle D E F$

あとは相似の性質を使って×を求めたらOKだね。
×は長さの部分だから，相似の性質「相似な図形の対応する辺の長さの比はすべて等しい」が使え そうだね。

相似な図形の性質

相似な図形の対応する辺の長さの比はすべて等しい。
相似な図形の対応する角の大きさはそれぞれ等しい。

対応する辺の比は等しいから，
$1.7: x=1: 5$ という比例式を立てることができるよね。
$1.7: x=1: 5 \leftarrow$ 比例式の性質 $「 a: b=c: d \rightarrow a d=b c 」$ を使うよ。
$x \times 1=1.7 \times 5$
$x=8.5$

木の高さは8．5mと求めることができたね。

相似の利用「建物の高さを求める」問題

相似の利用の単元では，木の高さを求める問題もよく出題されるけど，このように「建物の高さ」を求める問題もあるんだ。

ただ，解き方は同じになるよ。

高さ 2 m の鉄棒のかげが 1.5 m のとき，建物のかげが 30 m だった。この建物の高さを求めよ。

建物の高さを知りたいんだけれど，直接測ることは難しいよね。「かげ」を利用して，建物の高さを求められないかな？というわけだよ。

今回の問題のポイントも，木のかげの問題と同じで

かげは相似になるということ。

「鉄棒の高さ」と「鉄棒のかげ」の先端を結んだ三角形と，「建物の高さ」と「建物のかげ」の先端 を結んだ三角形は相似になるんだ。

今回求めたいのは「建物の高さ」だから，建物の高さをxmと置いたよ。 あとは相似の性質を使って×を求めればOKだね。

対応する辺の比は等しいから，
$2: x=1.5: 30$ という比例式を立てることができるよね。
$2: x=1.5: 30$
$x \times 1.5=2 \times 30$
$1.5 x=60 \leftarrow$ 両辺を 1.5 で割ろう
$x=40$

建物の高さは40mと求めることができたね。

相似の利用「見上げる」問題

木の高さを求める問題で少しレベルアップしたのが，「見上げる問題」だよ。

ある建物の高さを測るために，建物と 20 m はなれた地点から建物の頂上を見上げたら， その角度は 40° だった。
縮図を書いて，この建物の高さを求めなさい。ただし，目の高さを1．5mとする。

上の図をもっと簡潔に書いてみると次のようになるよね。今回の計算で大事なところは目線より上 のところだから，下の部分と建物は省略したよ。

では実際に建物の高さを求めよう。

縮図っていうのは，実物よりも大きさを小さくした図のことだよ。
どのくらい小さく書くかはノートの大きさ次第って感じかな。

例えば，I／IOの縮図を書くとすると，人と建物の距離は $20 \mathrm{~m} \times 1 / 10=2 \mathrm{~m}$ になるね。 $2 m$ ともなると，ノートに書くことができないから，もっと縮小する必要があるよね。

だから今回は1／I00の縮図を書くことにしよう。

20mを1／100にすると， $20 \mathrm{~m} \times 1 / 100=0.2 \mathrm{~m}$ 。
0.2 m とは 20 cm のことだから，上の三角形の底辺は 20 cm になるよ。

この三角形の高さを測ってみよう。

正確に三角形をかけていたら，16．8cmになると思うよ。

縮小する前の三角形（縮図）と縮小した三角形を比較してみよう。

縮図
実際の長さ

縮小しただけだから2つの三角形は相似になるよね。

求めたい三角形の高さをxmとおいて，相似な図形の性質を使って，×を求めよう。

相似な図形の性質

相似な図形の対応する辺の長さの比はすべて等しい。
相似な図形の対応する角の大きさはそれぞれ等しい。

ただ，単位が違うから「m」にそろえたよ。

縮図

実際の長さ

対応する辺の比は等しいから，
$0.2: 20=0.168: \times$ という比例式を立てることができるよね。
$0.2: 20=0.168: x$
$0.2 \times x=20 \times 0.168$
$0.2 x=3.36$
$2 x=33.16$
$x=16.8$

実際の長さの×が16．8mって求まったね。

最初の図で今回わかった 16.8 m を書き入れてみよう。

答えを「建物の高さ16．8m」としてしまったら間違いだよ。上の図をみてわかると思うけど，人の目線の高さを足さないといけないよね。

だから16．8に1．5を足すよ。
$16.8+1.5=18.3$

建物の高さは18．3mと求めることができるね。

相似の利用「縮図を描く」問題

もう一問，縮図を描いて長さを求める問題に挑戦してみよう。

ある池のA地点とB地点の距離を測りたい。
A地点から 30 m ， B 地点から 50 m のところにP地点をとり，$\angle A P B$ の大きさを測ったら 85° だった。このとき，A，B間の距離を求めなさい。

上の図をもっと簡潔に書いてみると次のようになるよね。

じゃあ実際にABの距離を求めよう。
$1 / 10$ の縮図を書くとすると，BPの距離は $50 \mathrm{~m} \times 1 / 10=5 \mathrm{~m}$ になるよ。
5 m ではノートに書くことができないから，今回ももっと縮小する必要があるよね。

今回は1／l000の縮図で書くことにしよう。

30 m を $1 / 1000$ にすると， $30 \mathrm{~m} \times 1 / 1000=0.03 \mathrm{~m}$ 。 0.03 m は 3 cm のことだね
50 m を $1 / 1000$ にすると， $50 \mathrm{~m} \times 1 / 1000=0.05 \mathrm{~m}$ 。 0.05 m はcmのことだよね。

この三角形のABの長さを定規で測ってみよう。

正確に三角形をかけていたら， 5.6 cm になると思うよ。
ここから，相似の性質を使って，実際のABの距離を求めてもいいけど，今回は違う方法で解いてみ よう。

I／I000の縮図を描いたのだから，もとの実際の距離を求めるには，1000倍してあげればいいよ ね。

縮図の 5.6 cm
$\downarrow \times 1000$
実際の $5.6 \times 1000=5600 \mathrm{~cm}=56 \mathrm{~m}$

と求めることができるよ。

池のAB間の距離は56mだね。

「相似の利用の問題の解き方」まとめ

－高さと影をもとに考える問題のポイント
$\rightarrow 「$ 高さ」と「かげ」を含む三角形はそれぞれみんな「相似になる」
\rightarrow 相似な図形の性質「相似な図形の対応する辺の長さの比はすべて等しい」を使って わかっていな部分の長さを求めることができる。
－「見上げる問題」では，高さを求めるのに「人の目線の高さ」を足さないといけないことに注意しよう
－「縮図を書く問題」では，もとの大きさをどのくらい縮小すればいいかを考えよう。

