相似な図形とは？相似の記号•相似な図形の性質を わかりやすく解説

相似とは

「そうじ」つて聞くと，部屋をきれいにする「掃除」を想像する人もいるかもしれないけ れど，数学の「そうじ」は，図形の「相似（そうじ）」のことだよ。

「相似」とは何かを漢字から考えてみよう。

```
「相」•••相手
「似」•••似ている
```

だから相似とは「相手と似ていること」。
つまり，「そっくりさん」のイメージだね。

もう少し丁寧に説明すると，数学で学習する相似とは，「同じ形のまま拡大•縮小したり している」ことで，同じ形のまま拡大や縮小した図形のことを「相似な図形」と呼ぶよ。 ポイントは「同じ形のまま」ということ。

下の 2 つの三角形を見てみよう。
$\triangle A B C$ を縮小した図形が $\triangle D E F た ゙ よ 。 こ の 2 つ の 三$ 角形は同じ形だから，「相似な図形」 だと言えるよ。

次に $\triangle A B C$ を拡大した図形が $\triangle D E F に な っ て い る ~ 土 ~$ 昜合。
この 2 つの三角形も，同じ形だから「相似な図形」だよ。

なんとなく「相似」とは何かがわかってきたかな？

「相似な図形」とは？

- 相似とは，同じ形のまま拡大•縮小したりすること
- 同じ形のまま拡大や縮小した図形のことを「相似な図形」と呼ぶ

合同な図形も相似

「相似」は，2年生で学習した「合同」と少し似ているところがあるから，合同についても復習しよう。合同というのは「2つの図形がぴったり重なること」だったよね。

実は，合同な図形も相似な図形といえるんだ。

だって $\triangle \mathrm{ABC}$ を同じ形のまま1倍に拡大した図形が $\triangle D E F た ゙ か ら, ~ 2 つ の$ 図形は相似とも言えるよ ね。

相似と合同のイメージは下のような感じで，相似な図形の中に合同な図形があるんだよ。

$\left[\begin{array}{l} \text { 合同な図形 } \\ (1 \text { 倍に拡大 }) \end{array}\right]$	2 倍に拡大
	$1 / 2$ 倍に縮小
	5倍に拡大
	$1 / 10$ 倍に縮小

相似であることを表す記号と使い方

$\triangle \mathrm{ABC}$ と $\triangle \mathrm{DEF}$ は相似だったよね。
この 2 つの三角形が，相似な図形であることを，記号で表すことができたら便利だよね。

2年生で学習した「合同」では，合同の記号「ミ（ごうどう）」があったよね。
同じように「相似」にも，相似を表す記号「cs（そうじ）」があるんだ

相似であることを表す記号「 10 」

「相似」や「類似している」ことを意味する英語の「similar」の頭文字「S」を横にしたといわれているよ

相似の記号 $「 \gg 」$ の使い方

相似の記号をどのように使うかを紹介するね。

$\triangle A B C と \triangle D E F か ゙ 木 ⿴ 囗 ⿱ 一 一 儿 丶 ~ 亻 ~ 亻 以 ゙ っ た と し た ら$ 次のように表すよ。
$\triangle A B C \backsim \triangle D E F$（読み方 三角形 $A B C$ 相似 三角形DEF）

相似の記号と合同の記号の関係

実は，相似の記号「か」と合同の記号「ミ」には関係があるんだよ。

実は合同の記号「ミ」は，昔は次のように表していたんだよ。

$$
\begin{aligned}
& \text { 昔 } \\
& \text { ○ } \\
& \equiv
\end{aligned}
$$

合同の記号の由来

- 合同な図形は相似でもあるため「cs」がついている
- 合同な図形は，面積が等しくなるから「＝」 がついている

同じ形（相似）で面積が等しいから，「 $\omega 」$ 」 $「=」$ がついた記号だったんだね。
それが，現在はすべてが線になって，「三」という記号になったよ。

相似な図形の性質

下の $\triangle \mathrm{ABC}$ を同じ形のまま 2 倍に拡大した $\triangle D E F を$ 書きなさい。

すべての辺の長さを2倍して書けばいいから次のようになるよ。

2つの三角形を見ると，次のことがわかるよね。

相似な図形の性質

辺の長さ
$A B: D E=1: 2$
$B C: E F=1: 2$
$C A: F D=1: 2$
\rightarrow すべて।：2になっているように，相似な図形の「対応する辺の長さの比はすべて等しい」。

角の大きさ
$\angle A=\angle D$
$\angle B=\angle E$
$\angle \mathrm{C}=\angle \mathrm{F}$
\rightarrow 相似な図形の対応する角の大きさはそれぞれ等しい。

相似比とは

相似な図形の対応する辺の長さの比のことを「相似比」と呼ぶよ。今回の問題だったら，相似比は1：2になるよ。

相似比の練習問題

テストでは，相似な図形の相似比がいくつであるかを求める問題が出るよ。試しにチャレンジしてみよう。

問 $\triangle A B C と \triangle D E F は$ 相似であるとき，相似比を求めなさい。

辺ACと対応する辺は辺DFなので，相似比は8：6になるね。
$8: 6=4: 3$ だから

答えは4：3だよ。

辺BCと辺EFの長さの比からも相似比は求められるよ。

「相似な図形」まとめ

- 相似とは，同じ形のまま拡大•縮小したりすること
- 同じ形のまま拡大や縮小した図形のことを「相似な図形」と呼ぶ

- 相似な図形の「対応する辺の長さの比はすべて等しい」
- 相似な図形の対応する角の大きさはそれぞれ等しい

