「円周角と弧の定理」「直径と円周角の定理」を わかりやすく解説

円周角と弧の関係を調べてみよう

前回「।つの弧に対する円周角の大きさは一定である」という円周角の定理を学習した ね。

前回は「弧 $A B$ 」だけに注目して見ればよかったよね。

今回は，弧ABとは別のところにある弧だけれど，弧ABと等しい弧について考えよう。

この図でイメージして欲しいのだけれど，「等しい弧」というわけなので，弧ABの部分をぐるっと円 に沿ってスライドさせれば，弧CDとピッタリ重なるというわけだよね。

ということは，前回学習した「1つの弧に対する円周角」と同じ条件になるということだね。だから。別の等しい弧に対する円周角の大きさは変わらないんだよ。
今回の図だと，$\angle P=\angle Q っ て こ と た ゙ ね 。 ~$

円周角と弧の関係のポイント

等しい弧に対する円周角の大きさは変わらない

それでは，練習問題にチャレンジしてみよう。

円周角と弧の関係を使った練習問題

下の図で，$\widehat{A B}=\widehat{C D}$ である。
×の角度を求めなさい。

$\widehat{\mathrm{AB}}=\widehat{\mathrm{CD}}$ だから，

- $\widehat{A B}$ に対する円周角 $\angle P$
- $\widehat{C D}$ に対する円周角 $\angle Q$

は等しくなるよね。
だから，$x=10^{\circ}$ と求めることができるね。
下の図で，$\widehat{\mathrm{AC}}=2 \widehat{\mathrm{CD}}$ になっている。×の角度を求めなさい。

この問題では，弧ABと弧CDは等しくはないので，今度はすこし様子が違うね。 でも難しく考えることはないよ。
弧の長さが 2 倍になっているなら，円周角も 2 倍になるというだけのことなんだ。

2倍すると 20° になるのだから，$x=10^{\circ}$ が答えになるよ。

円周角と弧の定理

「弧の長さが等しければ，円周角も等しくなる」という円周角と弧の関係がわかったね。 この関係のことを「円周角と弧の定理」というよ。

円周角と弧の定理

1つの円で弧の長さが等しいとき，それに対する円周角も等しい

逆に，円周角が等しいとき，それに対する弧の長さも等しい

「弧の長さが等しい時，それに対する円周角も等しくなる問題」はさっきやったよね。

だから，逆の「円周角が等しい時，それに対する弧の長さも等しい」という性質を使った問題に挑戦してみよう。

円周角と弧の定理を使った練習問題

下の図で，平行な弦AD，弦BCにはさまれた $\widehat{\mathrm{AB}}$ と $\widehat{\mathrm{CD}}$ の長さが等しくなることを証明しなさい。

まずACを結ぼう。

弦ADと弦 $B C$ は平行だから，錯角が等しくなって，$\angle A=\angle C$ になるよね。

ここからが重要なポイントだよ。

- $\angle \mathrm{C}$ は $\widehat{\mathrm{AB}}$ に対する円周角
- $\angle \mathrm{A}$ は $\widehat{\mathrm{CD}}$ に対する円周角

だよね。
$\angle A と \angle C$ の角度は等しいから，「円周角が等しいとき，それに対する弧の長さも等しい」という性質を使うと，
$\widehat{\mathrm{AB}}=\widehat{\mathrm{CD}}$
となることがわかるね。

直径と円周角の定理

以前に円周角と中心角について学習したよね。ちょっと復習してみよう。

円周角の定理

1つの弧に対する円周角の大きさは，その弧の中心角の大きさの半分である。
$\angle \mathrm{APB}=\frac{1}{2} \angle \mathrm{AOB}$

例えば，$\angle \mathrm{AOB}$ が 60° だったら $\angle \mathrm{APB}$ は 30° になるってことだったよね。

では，もし中心角が1 80° だったら円周角は何度になるか考えよう。

同じ弧に対する中心角の半分が円周角になるから，円周角は $180^{\circ} \div 2=90^{\circ}$ と求まるね。

ここで気づいてほしいんだけれど，中心角が1 80° になるときって，直径しかありえないよね。中心角が1 80° になったら，円周角は 90° になるから，次の関係が成り立つんだ。

直径と円周角の定理

線分ABを直径とする円の円周上に点Pを取ると，$\angle A P B=90^{\circ}$ になる

この関係を使って問題を解いてみよう。

直径と円周角の定理を使った練習問題

次の図で，線分ABが円Oの直径であるとき，×の角度を求めなさい。

直径と円周角の関係を使うと，線分ABは直径だから中心角は180 になるよね。

このときの円周角 $\angle P$ は $180^{\circ} \div 2=90^{\circ}$ になるよね。

$\triangle A B P$ に注目すると，内角の和が 180° になるから，残った×は50 ${ }^{\circ}$ とわかるね。

直径と円周角の定理の逆

直径と円周角の定理には逆が存在するんだ。

この定理は円の中心を三角定規を使って求めるときに役立つよ。

次のような円があるとき「円の中心」を三角定規を使って求めなさい。

コンパスを使って中心を求める方法は1年生の時に学習したよね。 3年生になると三角定規だけで円の中心を求めるようになるんだよ。

STEPI 三角定規の直角部分が円周に重なるように置いて，円周と交わる点を2つ取る

STEP2 赤い点同士を結ぶ

結ぶと次のようになって，円周角が 90° だから，赤線は直径ということがわかるよ。

つまり，円の中心は赤線の上にあるってことだね

STEP3 さらに三角定規の直角部分が円周に重なるように置いて，円周と交わる点を2つ取る

STEP4 青い点同士を結ぶ

結ぶと次のようになって，円周角が 90° だから，青線は直径ってことがわかるよ。

つまり，円の中心は青線の上にあるってことだね。

STEP5 赤線と青線が交わったところが中心

赤線も直径，青線も直径でどちらともの上に中心があるってことになるよ。

だから交わっているところが中心になるね。

「円周角と弧の定理」「直径と円周角の定理」まとめ

円周角と弧の定理

- 1つの円で弧の長さが等しいとき，それに対する円周角も等しい
- 円周角が等しいとき，それに対する弧の長さは等しい

直径と円周角の定理

- 線分 $A B$ を直径とする円の円周上に点 P を取ると，$\angle A P B=90^{\circ}$ になる
- $\angle \mathrm{APB}=90^{\circ}$ ならば，線分ABは円Oの直径である

