「yは×の二乗に比例する」関数の変化の割合の求め方•変域とは？

$y=a x^{2}$ の值の変化

「yはxの二乗に比例する関数 $\left(y=a x^{2}\right)$ 」の値が，どのように変化していくのか見てい こう。
$y=2 x^{2}$ の「 x 」と「 $y 」$ 」対応表を作成してみたよ。

x	-3	-2	-1	0	1	2	3
y	18	8	2	0	2	8	18

この対応表を見ると，「 $x=0$ 」から \times が 1 ずつ増えると，y は $2, ~ 6, ~ 10 と$ 増えていっているよね。

y の増え方はずっと同じでではないよね。

ずっと同じことを「一定」というから，
$「 y=a x^{2}$ の値の変化は一定ではない」といえるね。

2年生で勉強した一次関数「 $y=a x+b 」$ の値の変化はどうだったのか復習してみよう。

一次関数 $\ulcorner y=a x+b 」$ の値の変化

一次関数 $「 y=2 x+1 」$ の $\left.{ }^{2} x\right\lrcorner$ と $「 y 」$ の対応表を確認してみよう。

x	-3	-2	-1	0	1	2	3
y	-5	-3	-1	1	3	5	7

対応表を見ると「 $x=0$ 」から x が 1 ずつ増えると，y は 2 ずつ増えているよね。

$y は 2 す ゙ つ$ 増えているから，$「 y=a x+b 」$ の値の変化は一定だとわかるね。

- 次関数 $\ulcorner y=a x+b 」$ の値の変化
- y の増え方は一定
y は x の二乗に比例する関数 $\left.「 y=a x^{2}\right\lrcorner$ の値の変化
－yの増え方は一定ではない（ x の値によって変わってくる）
$y=a x^{2}$ の変化の割合の求め方

「変化の割合」という言葉を覚えているかな？
変化の割合とは，「どのくらい変化したか」を表すものだったよね。

変化の割合とは

- xが1増加したときのyの増加量を「変化の割合」という
- $\frac{\mathrm{y} \text { の增加量で求めることができる }}{\mathrm{x} \text { 増加量 }}$
y は x の二乗に比例する関数 $\left.「 y=2 x^{2}\right\lrcorner$ の変化の割合 $\frac{y \text { の增加量 }}{x \text { の增加量 }}$ ，次のようになるよ。

変化の割合はだんだんと大きくなっていて，一定ではないことがわかるね。
y は x の乗に比例する関数 $\left(y=a x^{2}\right)$ の変化の割合は，x の範囲によって変わってくるんだ。実際に問題で確かめてみよう。

$y=a x^{2}$ の変化の割合を求める問題

$$
y=3 x^{2} \text { について, xの値が।から4まで増加したときの変化の割合を求めよ。 }
$$

変化の割合は，$\frac{\mathrm{y} \text { の增加量で求めることができるので }}{\mathrm{x} \text { 增加量 }}$
xとyの対応表を考えてみよう。
$y=3 x^{2}$ で
$x=1$ のとき，
$y=3 x^{2}$
$=3 x x^{2}$
$=3 \times 1^{2}$
$=3 \times 1$
$=3$
$\mathrm{x}=4$ のとき，
$y=3 x^{2}$
$=3 x x^{2}$
$=3 \times 4^{2}$
$=3 \times 16$
$=48$
x とyの対応表を作ってみよう。関係のないところは「．．．」と書いてあるよ。

$+45$

対応表から，\times の増加量 $=+3, ~ y$ の増加量 $=+45$ とわかるから，
$=\frac{\mathrm{y} \text { の增加量 }}{\mathrm{x} \text { の增加量 }}$
$=\frac{+45}{+3}$
$=15$

変化の割合は「15」と求めることができたね。
じゃあ次に，×の範囲を変えてみるよ。
$y=3 x^{2}$ について，x の値が一 2 から ほ まで増加したときの変化の割合を求めよ。
変化の割合は $\frac{\mathrm{y} \text { の増加量で求めることができるので，}}{\mathrm{x} \text { の增量 }}$
xとyの対応表を考えてみよう。

$$
\begin{aligned}
& y=3 x^{2} \text { で } \\
& x=-2 \text { のとき, } \\
& y=3 x^{2} \\
& =3 \times x^{2} \\
& =3 \times(-2)^{2} \\
& =3 \times 4 \\
& =12 \\
& x=1 \text { のとき, } \\
& y=3 x^{2} \\
& =3 \times x^{2} \\
& =3 \times 1^{2} \\
& =3 \times 1 \\
& =3
\end{aligned}
$$

x とyの対応表を作ってみよう。関係のないところは「．．．」と書いてあるよ。

対応表から，x の増加量 $=+3, ~ y$ の増加量 $=-q$ とわかるので，
$=\frac{\mathrm{y} \text { の增加量 }}{\mathrm{x} \text { の增加量 }}$
$=\frac{-9}{+3}$
$=-3$

変化の割合は「－3」と求めることができたね。

$y=3 x^{2}$ の変化の割合

- xの値がlから4まで増加したときの変化の割合はI5
- \times の値が一2から1まで増加したときの変化の割合は3
y は x の二乗に比例する関数 $\left(y=a x^{2}\right)$ の変化の割合は，x の範囲によって変わってくることをしっか り覚えておこう。

一次関数 $\Gamma y=a x+b 」$ の変化の割合

一次関数の変化の割合はどうなっていうのか，復習もかねて確認しておこう。
$y=2 x+1$ の変化の割合 $\frac{\mathrm{y} \text { の増加量 }}{\mathrm{x} \text { の增量 }}$ は次のようになるよ。

$+1+1+1$	
－1	$\begin{array}{llll}0 & 1 & 2 & 3\end{array}$
－1	$1 \begin{array}{llll}1 & 3 & 5\end{array}$
$\cdots \mathrm{N}$	
	＋2＋2＋2
変化の割合	222
	11
	$=2=2=2$

変化の割合はずっと「2」になるから，一定だとわかるね。

一次関数の変化の割合は一定になるよ。
y は x の二乗に比例する関数と一次関数の変化の割合

- y は x の乗に比例する関数 $y=a x^{2}$ の変化の割合は一定ではない
- 一次関数 $y=a x+b$ の変化の割合は一定
$y=a x^{2}$ の変域

「変域」とは，「範囲のこと」だと思っていればOKだよ。
$y=x^{2}$ で x の変域が次のとき，y の変域を求めなさい。
（1） $1 \leqq x \leqq 3$
（2）$-2 \leqq x \leqq 1$

まず，$y=x^{2}$ のグラフの形を思い出してみよう。

（1）
$1 \leqq x \leqq 3$ の範囲だけグラフを書いてみると次のようになるよ。

y の値は，$y=x^{2}$ の式に x を代入してそのつど求めることができるね。
y の最小値は $y=1$ のとき，
y の最大値は $y=9$ のときだから
$1 \leqq y \leqq 9$
とyの変域が求まるよ。
（2）
$-2 \leqq x \leqq 1$ の範囲だけグラフを書いてみると次のようになるよ。

y の最小値は $y=0$ のとき，
y の最大値は $y=4$ のときだから
$0 \leqq y \leqq 4$

とyの変域が求まるよ。

よくある間違い

$y=x^{2}$ で x の変域が $-2 \leqq x \leqq 1$ のときの y の変域を求める問題は間違えやすいので，
注意が必要だよ。

なぜなら，xの変域に「O」が含まれているから。（ -2 から Iの範囲に，「 O」がふくまれているよね）

最大値は $y=4$ のときだというのは間違えようがないんだけれど，問題は最小値。

グラフを書けば，最小値はxが「0」のときのy＝0のときだとわかるんだけれど，
グラフを書かずに式と変域だけで見てしまうと，つい最小値は $=1$ のときの $y=1$ と早とちりして しまうんだよ。

ミスをふせぐために，yはxの二乗に比例する関数（ $y=a x^{2}$ ）のx変域が「 0 」をはさむ場合は，簡単 でいいのでグラフを書いてyの変域を確かめるのが確実で安全だね。

「yはxの二乗に比例する関数の変化の割合•変域」まとめ

- y は x の二乗に比例する関 $\left(y=a x^{2}\right)$ の値の変化は一定ではない
- y は x の二乗に比例する関数（ $y=a x^{2}$ ）の変化の割合は，x の範囲によって変わってくる
- xの変域に「O」が含まれている場合は，yの変域の最小は「O」になるので，注意しよう

