二次方程式とその解「二次方程式」とは？
 「解」をわかりやすく解説

二次方程式とは

3 年生では「二次方程式」を学習していくよ。

「方程式」というと，1年生の時に「一次方程式」，2年生の時に「連立方程式」を学習 したよね。

それぞれどんな方程式だったか復習してみよう。

一次方程式

$x+4=6, ~ 2 x+3=5$ など

連立方程式
$\left\{\begin{array}{c}2 x+y=11 \\ x-2 y=3\end{array}\right.$

一次方程式は「かけられている文字の数が1つの方程式」，
連立方程式は「2つ以上の方程式が組み合わさったもの」だったよね。

では二次方程式はどんな方程式かというと，
「かけられている文字の数が2つの方程式」
のことだよ。
文字が 2 つだから，「二次」方程式というんだね。
「二次」ってことは，かけられている文字が2つということだから，xの 2 乗がたくさん出現するよ！

二次方程式の例

二次方程式の例を紹介するね。
$x^{2}=9$
$x^{2}+2 x=4$

「 x^{2} 」は x が 2 回かけられているよね。かけられている文字が 2 だから，どちらも二次方程式だよ。

二次方程式を見つけよう

（例）次の方程式の中から二次方程式を選びなさい。
（1）$x^{2}+3 x+2=0$
（2）$x^{2}+4=x^{2}+3 x$
（3）$x^{3}=8$
（4）$(x-2)^{2}=4$

答えは，（1）（4）が二次方程式になるよ。まちがえやすいものを紹介するね。
（2）$x^{2}+4=x^{2}+3 x$
「（2）も二次方程式じゃないの？」と思うよね。
$x^{2}+4=x^{2}+3 x$
の右辺にある x^{2} を左辺に移項しよう。移項すると符号が変わるから次のようになるよ。
$x^{2}-x^{2}+4=3 x$
$0+4=3 x$
$4=3 x$

移項すると x^{2} がなくなってしまうよね。だから $x^{2}+4=x^{2}+3 x$ は 2 次方程式ではな いんだよ。（ちなみに一次方程式だね）
（3）$x^{3}=8$
$「 x{ }^{3} 」$ は，x が 3 回かけられているから，かけられている文字が 3 つだから，三次方程式だね。
（4）$(x-2)^{2}=4$
左辺を展開すると
$x^{2}-4 x+4$ になるね。
だからこれは二次方程式といえるね。

二次方程式の一般形

一般形っていうのは，どの方程式にも共通している形だと考えればOKだよ。

二次方程式の一般的な形は次のようになるよ。
$a x^{2}+b x+c=0$
aやbやcには数字入るんだけど，a は 0 になってはいけないんだよ。
$a=0$ になってはいけない理由
もし $a=0$ になったら
$a x^{2}+b x+c=0$ は
$0 x^{2}+b x+c=0 \quad \leftarrow 0 \times$ は 0 のこと
$0+b x+c=0$
$b \times+c=0$
となって，一次方程式になっちゃうよね。
だから教科書や問題集には
$a \times 2+b \times+c=0 \quad(a \neq 0)$
と書かれているんだ。
ちなみに $a \neq 0 っ$ ていうのは「 a は 0 ではない」という意味だよ。

二次方程式の例題

これからの学習では，「二次方程式を解く」ということをするんだ。

方程式っていうのは，文字が使われている等式だったよね。

例えば，次の問題を考えてみよう。
（例1）方程式 $\times 2=9$ は，\times にいくつを入れると成り立つかな？

ぱっとわかる人はいいんだけれど，わからない人は×に順番に数字を入れてみよう。 xに－3から3まで入れてみたよ。左辺と右辺の値が同じになる（これを「方程式が成り立つ」というよ）のは，×がいくつのときかな？

x の値	左辺 x^{2}	大小関係	右辺 9
$x=-3$	$(-3)^{2}=9$	$=$	9
$x=-2$	$(-2)^{2}=4$	$<$	9
$x=-1$	$(-1)^{2}=1$	$<$	9
$x=0$	$0^{2}=0$	$<$	9
$x=1$	$1^{2}=1$	$<$	9
$x=2$	$2^{2}=4$	$<$	9
$x=3$	$3^{2}=9$	$=$	9

上の表から，×が3のときと×が一3のときに，左辺と右辺が同じになって，方程式が成り立つね。

これから学習する二次方程式は，成り立つ値が2つあることがほとんどだよ。

二次方程式のポイント

今まで学習したことをまとめてみたよ。

- 二次方程式とは，かけられている文字の数が2つの方程式
- 一般的な形は次のようになるよ。
$a x^{2}+b x+c=0 \quad(a \neq 0)$
－二次方程式は，成り立つ値は2つあることがほとんど

「解」とは

方程式を成り立たせることができる値のことを「方程式の解」というよ。

さっきの問題でいえば，方程式 $x^{2}=9$ の解は
$x=-3,3$
となるよ。
$-2, ~-1, ~ 0, ~ 1, ~ 2 の う ち, ~ 二$ 次方程式 $x^{2}+3 x+2=0$ の解を選びなさい。
ぱっとわかる人はいいんだけれど，わからない人は×に順番に数字を入れてみよう。×に一2から2ま

x の値	左辺 $x^{2}+3 x+2$	大小関係	右辺
$x=-2$	$(-2)^{2}+3 \times(-2)+2=0=$	0	
$x=-1$	$(-1)^{2}+3 \times(-1)+2=0=$	0	
$x=0$	$0^{2}+3 \times 0+2=2$	$>$	0
$x=1$	$1^{2}+3 \times 1+2=6$	$>$	0
$x=2$	$2^{2}+3 \times 2+2=12$	$>$	0

上の表から，×が一2のときと×が一1のときに，左辺と右辺が同じになっているから，方程式の解は× ＝－2，－اとわかるね。

「解く」とは

方程式の解を求めることを方程式を解くっていうんだよ。
二次方程式 $x^{2}-2 x-3=0$ を解きなさい。
ぱっとわかる人はいいんだけど，わからない人は×に順番に数字を入れてみよう。×に一3から3まで入れてみたよ。左辺と右辺の値が同じになるのは，×がいくつのときかな？
$\left.\begin{array}{|l|l|l|l|}\hline x \text { の値 } & \begin{array}{l}\text { 左辺 } \\ x^{2}-2 x-3\end{array} & \text { 大小関係 } & \text { 右辺 } \\ \hline x=-3 & (-3)^{2}-2 \times(-3)-3=1 \\ 2 & > & 0\end{array}\right)$

上の表から，×が一 I のときと×が3のときに，左辺と右辺が同じになっているから，方程式の解は $x=$ －I，3とわかるね。

二次方程式で出てくる用語

二次方程式では次の言葉が出てきたよ。ほとんど，1 年生でも学習した内容だけど，もう一度しっ かり確認して覚えよう。

二次方程式で出てくる用語

（1）二次方程式

- かけられている文字の数が2つの方程式
- 3年生で学習する方程式
※高校生では，三次方程式っていうのを勉強するよ。 $\left(x^{3}+3 x+2=0\right)$
－一般的な形は次のようになるよ。

$$
a x^{2}+b x+c=0 \quad(a \neq 0)
$$

（2）二次方程式の解

- 二次方程式を成り立たせる×の値のこと
- 二次方程式の解は2つあることがほとんど
（3）方程式を解く
－方程式の解を求めること

