「二次方程式の解の公式」とは？
 解の公式の証明と問題の解き方

二次方程式の解の公式とは

「二次方程式の解の公式」だなんて言葉だけを聞くと，なんだかとっても難しそうで身構 えてしまうよね。

まず，「二次方程式の解の公式」とはなんなのか，何のためにそれを学ぶのかを説明する よ。

まず「公式」についてなんだけれど，今までも公式はいろいろなものを学習してきたよ ね。 たとえば，「円の面積を求める公式」。

円の面を求める公式は，「 $\pi r^{2} 」$ だね。

この「円の面積を求める公式」を覚えてしまえば，あとは円の半径（r）が分かれば，す ぐに円の面積を計算することができて，とても便利だよね。

公式は，ざっくり説明すると，「空欄（文字になっているところ）に必要な情報を当ては めれば，答えが分かってしまう便利なツール」というイメージかな。

さて，二次方程式の話に戻って，二次方程式の一般形は，「 $a x^{2}+b x+c=0 」$ だね。問題では，たとえば「二次方程式 $2 x^{2}+3 x+1=0$ を解きなさい」なんていうように登場するよね。

これまで，×がいくつになるかを解くために，式の部分を平方根で考えてみたり，因数分解を使って考えてみたりしてきたよね。

でも，これらの方法って，たまたま平方根で考えることができる形だったとか，たまたま因数分解を使って考えることができる形だったときにしか通用しないよね。

では，それらの方法が通用しないとき，どうすればいいのかというと，そこで大活躍する のが「解の公式」なんだよ。

「二次方程式の解の公式」は，どんな問題でも必ず通用する必殺アイテムなんだ。
 れば，その公式に当てはめてあげることで，×がいくつか分かってしまうんだよ。 そんな便利アイテム「二次方程式の解の公式」を紹介するよ。

二次方程式の解の公式

$$
X=\frac{-\mathrm{b} \pm \sqrt{b^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}
$$

初めて見ると，びっくりしてしまうよね。

たしかにかなり複雑な公式なんだけれど，バンバン使うし，なんなら高校数学でも使うの で，なんとしても絶対に覚えよう。

解の公式の覚え方について

解の公式を覚えるための語呂合わせもいくつかあるのだけれど，みんな言うのは「結局そのまま覚えるのが一番速い」ということ。

この公式，たしかに複雑だけれど，ロに出して見ると結構リズムが良いというか，何度も何度も口ずさむうちに，案外覚えてしまったりするよ。

「に一え一ぶんのまいなすびーぷらすまいなするーとびーにじょうまいなす よんえーしー」

これを地道に復唱してみよう。かけざんの九九と同じ感覚だね。 なんだか呪文みたいで楽しいという意見もあるよ。せっかくなら楽しんでしまおう！

二次方程式 $「 a x^{2}+b x+c=0$ 」を解いてみよう

二次方程式の解の公式は $X=\frac{-\mathrm{b} \pm \sqrt{b^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$ だと紹介したけれど，「一体なんでこんな公式に なるの？」と思うかもしれないね。

公式は，「なぜその公式が成り立つのか」を考えることも大切だよ。
そこで，ここではなぜ二次方程式の解が $X=\frac{-\mathrm{b} \pm \sqrt{b^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$ となるのか，確かめてみよう。
 だ。

では，ここから実際に「 $a x^{2}+b x+c=0 」 を$ 解いていくよ。
$「 a x^{2}+b x+c=0 」 を$ 解くので，数字ではなく文字で考えるから計算は結構ややこしくなっ てしまうよ。
ゆっくりひとつずつ確認していってね。

（1）$a x^{2}+b x+c=0$ の両辺を a で割る

以前，$x^{2}+a x+b=0$ を $(x+\bigcirc)^{2}=\triangle$ みたいな形にしたよね。（平方完成）

同じようにやるためには「 $a x^{2}+b x+c=0 」$ の両辺を「 $a 」 て ゙ ~ ⿰ ⿱ ⿱ 宀 ⿻ 三 丨 口 刂 刂 ~ っ て, ~ x^{2} の$ 係数を।にしょ う。

まず，x^{2} の係数「 $a 」$ がじゃまだから，両辺を「 $a 」$ で割ろう。
$\left(a x^{2}+b x+c\right) \div a=0 \div a$
$x^{2}+\frac{b}{a} x+\frac{c}{a}=0$
x の係数が「I」になったね。 $^{\text {I }}$
（2）$(x+\bigcirc)^{2}=\triangle$ の形にする $x^{2}+\frac{b}{a} x+\frac{c}{a}=0$ を $(x+\bigcirc)^{2}=\triangle$ にするために，まずは $+\frac{c}{a}$ を右辺に移項しよう。
$x^{2}+\frac{b}{a} x+\frac{c}{a}=0$
$x^{2}+\frac{b}{a} x=-\frac{c}{a}$
ここまでできたら次がすごく重要。
$(x+O)^{2}=\triangle$ にするために，両辺にある数を足すんだけどいくつかわかるかな？
答えは $\frac{\mathrm{b}^{2}}{4 \mathrm{a}^{2}}$ を両辺に足すよ。
以前学習した $(x+O)^{2}=\triangle$ のポイントを復習してみよう。

```
(x+\bigcirc)2}=\triangleの形にするポイント
x + +ax+b=0の両辺に「aを2で割った数の 2 乗」を足す。
```

つまり「xの前の係数を 2 で割った数の 2 乗」を足すってことだったよね。

今回の問題「 $x^{2}+\frac{b}{a} x=-\frac{c}{a} 」$ でいったら
\times の前の係数は $\frac{b}{a}$
\times の前の係数を 2 で割った数は，$\frac{\mathrm{b}}{\mathrm{a}} \div 2=\frac{\mathrm{b}}{2 \mathrm{a}}$
\times の前の係数を 2 で割った数の 2 乗は，$\left(\frac{\mathrm{b}}{2 \mathrm{a}}\right)^{2}=\frac{\mathrm{b}^{2}}{4 \mathrm{a}^{2}}$
になるよ。

だから $x^{2}+\frac{b}{a} x=-\frac{c}{a}$ の両辺に $\frac{b^{2}}{4 a^{2}}$ を足してみよう。
$x^{2}+\frac{b}{a} x=-\frac{c}{a}$
$x^{2}+\frac{b}{a} x+\frac{b^{2}}{4 a^{2}}=-\frac{c}{a}+\frac{b^{2}}{4 a^{2}}$
ここまでついてこられたかな？すごく複雑な式になっているね。
（左辺）と（右辺）に分けて考えよう。
（左辺）$=x^{2}+\frac{b}{a} x+\frac{b^{2}}{4 a^{2}}$
$x^{2}+\frac{\mathrm{b}}{\mathrm{a}} \mathrm{x}+\frac{\mathrm{b}^{2}}{4 \mathrm{a}^{2}}$ は $(\mathrm{x}+\bigcirc)^{2}$ の形にできるんだけど，○に入る文字式はわかるかな？
○に入る式は「xの係数を2で割ったもの」だから，$\frac{\mathrm{b}}{\mathrm{a}} \div 2=\frac{\mathrm{b}}{2 \mathrm{a}}$ が入るよ。 だから
（左辺）
$=x^{2}+\frac{b}{a} x+\frac{b^{2}}{4 a^{2}}$
$=\left(x+\frac{\mathrm{b}}{2 \mathrm{a}}\right)^{2}$
になるよ。
（右辺）$=-\frac{c}{a}+\frac{b^{2}}{4 a^{2}}$
2 つの分数の足し算を考えよう。

分母は「a」と「4 $a^{2} 」$ だから，「 $4 a^{2} 」$ にそろえよう。

そのために
－$-\frac{c}{a}$ の分母と分子に「4a」をかけよう
$=-\frac{c \times 4 a}{a \times 4 a}$
$=-\frac{4 a c}{4 a^{2}}$

だから
（右辺）
$=-\frac{c}{a}+\frac{b^{2}}{4 a^{2}}$
$=-\frac{4 \mathrm{ac}}{4 \mathrm{a}^{2}}+\frac{\mathrm{b}^{2}}{4 \mathrm{a}^{2}} \leftarrow$ 分母が同じだから 1 つの分数にまとめるよ。
$=\frac{-4 \mathrm{ac}+{ }^{2}}{4 \mathrm{a}^{2}} \leftarrow$ 分子の -4 ac とb2の順番を入れ替えるよ。
$=\frac{b^{2}-4 a c}{4 a^{2}}$
（3）$(x+\bigcirc)^{2}=\triangle$ の形にする
（左辺）と（右辺）の計算から
$x^{2}+\frac{b}{a} x+\frac{b^{2}}{4 a^{2}}=-\frac{c}{a}+\frac{b^{2}}{4 a^{2}}$ は次のように表せるよ。
$x^{2}+\frac{b}{a}+\frac{b^{2}}{4 a^{2}}=-\frac{c}{a}+\frac{b^{2}}{4 a^{2}}$
$\left(x+\frac{\mathrm{b}}{2 \mathrm{a}}\right)^{2}=\frac{b^{2}-4 a c}{4 a^{2}}$
無事に $(x+\bigcirc)^{2}=\triangle$ の形に変形することができたね。

×の值を求める

いよいよ×の値を求めてみるよ。その前にちょっと復習をしてみよう。

```
(x+3)}\mp@subsup{)}{}{2}=5\mathrm{ の解を求めよ。
(x+3)をAとおいて
A
Aは2乗して5になる数なんだけど, 整数では存在しないからルートを使って
A = - \sqrt{}{5}
A=\sqrt{}{5}
と求めるんだったよね。
Aってx+3のことだから, もとにもどして
x+3=-\sqrt{}{5}
x+3=\sqrt{}{5}
になるから「3」を移項して
x= - \sqrt{}{5}-3
x=\sqrt{}{5}-3
が解になるんだったよね。
```

本題にもどって
$\left(\mathrm{x}+\frac{\mathrm{b}}{2 \mathrm{a}}\right)^{2}=\frac{b^{2}-4 a c}{4 a^{2}}$ の \times の値を求めよう。
（左辺）の $\Gamma_{X}+\frac{b}{2 a} 」$ を $A 」$ と置くと
$\left(x+\frac{\mathrm{b}}{2 \mathrm{a}}\right)^{2}=\frac{b^{2}-4 a c}{4 a^{2}}$
$\mathrm{A}^{2}=\frac{b^{2}-4 a c}{4 a^{2}}$

Aは 2 乗して，$\frac{b^{2}-4 a c}{4 a^{2}}$ になる数なんだけど，整数では存在しないからルートを使おう。
$\mathrm{A}^{2}=\frac{b^{2}-4 a c}{4 a^{2}}$
$A= \pm \sqrt{\frac{b^{2}-4 a c}{4 a^{2}}} \leftarrow 「 \pm 」$ というのは，＋と－を合わせた表し方だよ。

あえて，ルートを分母と分子にわけると次のようになるよ。
$\mathrm{A}= \pm \sqrt{\frac{b^{2}-4 a c}{4 a^{2}}}$
$A= \pm \frac{\sqrt{b^{2}-4 a c}}{\sqrt{4} a^{2}}$
$\sqrt{4} a^{2}$
$=\sqrt{2 \mathrm{a} \times 2 \mathrm{a}}$
だからルートを外すことができて，「2a」になるよね。

だから
$A= \pm \frac{\sqrt{b^{2}-4 a c}}{\sqrt{4} a^{2}}$
$A= \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}$
と表せるよ。

「A」を「x $+\frac{\mathrm{b}}{2 \mathrm{a}}$ 」にもどそう
$x+\frac{\mathrm{b}}{2 \mathrm{a}}= \pm \frac{\sqrt{b^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$
\times の値を求めたいので，（左辺）の $+\frac{\mathrm{b}}{\mathrm{a}}$ を移項して
$\mathrm{x}=\frac{-\mathrm{b}}{2 \mathrm{a}} \pm \frac{\sqrt{b^{2}-4 \mathrm{a}}}{2 \mathrm{a}}$
$\frac{-\mathrm{b}}{\mathrm{a}} \mathrm{a}$ の「－（マイナス）」を分子にもってくると
$\mathrm{x}=\frac{-\mathrm{b}}{2 \mathrm{a}} \pm \frac{\sqrt{b^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$
（右辺）は 2 つとも分母が「2a」だから 1 つの分数にして
$x=\frac{-\mathrm{b}}{2 \mathrm{a}} \pm \frac{\sqrt{b^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$
$X=\frac{-\mathrm{b} \pm \sqrt{b^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$
と×の値を求めることができたね。

解の公式を使って二次方程式を解いてみよう

さっき，$a x^{2}+b x+c=0$ の解が求まったね。
 $X=\frac{-\mathrm{b} \pm \sqrt{b^{2}-4 \mathrm{a}}}{2 \mathrm{a}}$ と表されるんだよ。

実際にどのように解の公式を使うか問題を使って確かめてみよう。
（ 1 ） $2 x^{2}+3 x+1=0$ を解の公式を使って解きなさい。
$a x^{2}+b x+c=0$ と比べると
$a=2, ~ b=3, ~ c=1$ であることがわかるね。

この3つの値を解の公式に代入しょう。
$x=\frac{-(b \pm \sqrt{b})^{2}-4(a c}{2 a} 2$
$x=\frac{-3 \pm \sqrt{3^{2}-4 \times 2 \times 1}}{2 \times 2}$
$x=\frac{-3 \pm \sqrt{9-8}}{4}$
$x=\frac{-3 \pm \sqrt{1}}{4}$
$\sqrt{1}=1$ になるから，もう少し計算することができるね。
$x=\frac{-3 \pm 1}{4}$
さを＋と－でわけて考えよう
$x=\frac{-3+1}{4}, \frac{-3-1}{4}$
$x=\frac{-2}{4}, \frac{-4}{4}$
$x=-\frac{1}{2}, ~-1$
（2）$x^{2}-3 x+1=0$ を解の公式を使って解きなさい。
$a x^{2}+b x+c=0$ と比べると
$a=1, ~ b=-3, ~ c=1$ であることがわかるね。
この 3 つの値を解の公式に代入しよう。
$x=\frac{-3-\sqrt{-3} 11}{-\left(b+\sqrt{b^{2}-4 a c}\right.} \frac{2 a}{1}$
$x=\frac{-(-3) \pm \sqrt{(-3)^{2}-4 \times 1 \times 1}}{2 \times 1}$
$x=\frac{3 \pm \sqrt{9-4}}{2}$
$x=\frac{3 \pm \sqrt{5}}{2}$

解の公式で気を付けること
－「ー（マイナス）」を代入するときは，かっこをつける。

