「因数分解を使った二次方程式の解き方」を例題を使って徹底解説

$(x-a)(x+b)=0$ の二次方程式の解き方

今までに二次方程式を解く方法を2つ勉強してきたよね。

- 1つ目が平方根の考えを使った方法
- 2 つ目が解の公式を使った方法

解の公式はどんな二次方程式であったも「これさえ知っていればなんとかなる」という便利アイテムだったよね。

解の公式の復習をしてみよう。
$x 2+5 x+4=0$ を解の公式を使って解いてみよう
$a x^{2}+b x+c=0$ と比べると
$a=1, ~ b=5, ~ c=4$ であることがわかるね。

この3つの値を解の公式に代入しよう。
$x=\frac{\left.-\frac{5}{b} \pm \sqrt{\frac{5}{b}-4 a(}\right)}{\frac{2 a}{1}}$
$x=\frac{-5 \pm \sqrt{5^{2}-4 \times 1 \times 4}}{2 \times 1}$
$x=\frac{-5 \pm \sqrt{25-16}}{2}$
$x=\frac{-5 \pm \sqrt{9}}{2}$
$\sqrt{9}=3$ になるから，もう少し計算することができるね。
$x=\frac{-5 \pm 3}{2}$
\pm を＋と－でわけて考えよう
$x=\frac{-5+3}{2}, \frac{-5-3}{2}$
$x=\frac{-2}{2}, \frac{-8}{2}$
$x=-1, ~-4$
$x^{2}+5 x+4=0$ が $x=-1$ と $x=-4$ であることがわかったね。

ただ，解の公式ってすごく計算がめんどうくさいよね。

実は $x^{2}+5 x+4=0$ のような二次方程式だったら解の公式を使わずに簡単に解を求めること ができるんだよ。
$x^{2}+5 x+4=0$ を因数分解を使って解いてみよう
$x^{2}+5 x+4=0$ の左辺に注目しよう。
$x^{2}+5 x+4$ つ て因数分解できるよね。
$x^{2}+5 x+4=(x-1)(x-4)$

だから二次方程式は次のように変形できるよ。
$x^{2}+5 x+4=0$
$(x-1)(x-4)=0$

この式って
$(x-1) \times(x-4)=0$ のことだよね。

この式をわかりやすく文章にすると

「（x－1）と（x－4）をかけたらOになるよ。そのときxの値っていくつになるかな」 ということだよね。
$(x-1)$ と $(x-4)$ をかけたら 0 になるってことは，どちらかが 0 になったらいいよね。

$$
\frac{(x-1)}{=0} \times \frac{(x-4)}{=0}=0
$$

どちらかがOになればよい。

だから
（1）$(x-1)=0$ になるか
（2）$(x-4)=0$ になるか

そうすると 2 次方程式の解は
（1）$(x-1)=0 \rightarrow x=1$
（2）$(x-4)=0 \rightarrow x=4$

と求められるよ。

解の公式を使って解くよりも簡単に解けたんじゃないかな？
解の公式を使う前に，因数分解ができないかを考えよう。

```
ポイント
(x-a)(x+b)=0のように因数分解できるとき
解は }x=a, x=-bになる
```


$(x-a)(x+b)=0$ の練習問題

（1）$(x-3)(x-2)=0$ を解きなさい。
$(x-3) \times(x-2)=0$ のことだから，
$x-3=0$ になるか，$x-2=0$ になればいいよね。
だから 2 次方程式の解は
$x-3=0 \rightarrow x=3$
$x-2=0 \rightarrow x=2$

になるよ。
（2）（ $x+3$ ）（ $x-2$ ）$=0$ を解きなさい。
$(x+3) \times(x-2)=0$ のことだから，
$x+3=0$ になるか，$x-2=0$ になればいいよね。
だから2次方程式の解は
$x+3=0 \rightarrow x=-3$
$x-2=0 \rightarrow x=2$

になるよ。
（3）（x－2） $2=0$ を解きなさい。
$(x-2) \times(x-2)=0$ のことだから，
$x-2=0$ になればいいよね。

だから二次方程式の解は
$x-2=0 \rightarrow x=2$

二次方程式ってだいたいの問題で解が 2 つになるんだけど，$(x-2)^{2}=0 み た い な ~(x-a) 2=0$ の形に因数分解できるときは解が। つになるんだ。

解が1つになることを「重解（じゅうかい）」つていうんだよ。

漢字を見てもらったらわかると思うけど「解が重なっている」つていう意味だね。
$(x-2)^{2}=(x-2)(x-2)$ ということだから，$x=2$ が重なっていると考えればいいね。
（4）$x^{2}+3 x+2=0$ を解きなさい。

左辺を見たら因数分解できることがわかるね。
$x^{2}+3 x+2=(x-1)(x-2)$

2 次方程式は
$x^{2}+3 x+2=0$
$(x-1)(x-2)=0$

になるよ。
$(x-1) \times(x-2)=0$ のことだから，
$x-1=0$ になるか，$x-2=0$ になればいいよね。

だから二次方程式の解は
$x-1=0 \rightarrow x=1$
$x-2=0 \rightarrow x=2$

になるよ。
（5）$x^{2}-25=0$ を解きなさい。

左辺を見たら因数分解できることがわかるね。
$x^{2}-25=(x+5)(x-5)$
2 次方程式は
$x^{2}-25=0$
$(x+5)(x-5)=0$

になるよ。
$(x+5) \times(x-5)=0$ のことだから，
$x+5=0$ になるか，$x-5=0$ になればいいよね。

だから二次方程式の解は
$x+5=0 \rightarrow x=-5$
$x-5=0 \rightarrow x=5$

になるよ。

$x^{2}=a \times$ の二次方程式の解き方

$x^{2}=3 x$ みたいな形の二次方程式ってすごく間違えやすいんだ。間違えの例を紹介するね。

$$
x^{2}=3 \times \text { の間違いの例 }
$$

両辺を×で割って
$x^{2} \div x=3 x \div x$
$x=3$

間違ってることが分かりづらいかもしれないけれど，この解き方はダメなんだ。 どこが違うのかというと

「両辺を×で割る」

方程式の問題で「両辺を文字で割る」つていうのはかなり危険な行為だと覚えておこう。 その理由は文字が 0 になるかもしれないから

算数や数学の世界では「Oで割ってはいけない」という決まりがあるんだよ。

もし，×がOだった場合，その決まりを破ることになるから，「両辺を×で割る」というと ころが間違っているんだよ。

○で割ってはいけない理由

小学生でもわかるように○で割ってはいけない理由を考えてみよう。

あたりまえだけど
$6 \div 3=2$ だよね。

この式って
3×2 をしたら元の6に戻るよね。

同じように
$12 \div 6=2$ だよね。

この式って
6×2 をしたら元の12に戻るよね。

じゃあ
$6 \div 0$ を考えよう。

もし6 $\div 0=\diamond$ になったとしたら
$0 \times \diamond$ をしたら6になるってことだよね。

ただ，Oにどんな数をかけても6にはならないよね。だから，6 $\div 0$ はできないということ になるんだよ。

0で割ってはいけないということは覚えておこう。
$x^{2}=a \times$ の二次方程式の解き方
$x^{2}=3 x$ を解くには，まず（右辺）の $3 x$ を移項しよう。
$x^{2}=3 x$
$x^{2}-3 x=0$

次に共通因数 \times でくくろう。
$x^{2}-3 x=0$
$x(x-3)=0$ 厄展開したら上の式に戻ることは確認しておこう。
この式って
$x \times(x-3)=0$ のことだから，
$x=0$ になるか，$x-3=0$ になればいいよね。

だから 2 次方程式の解は
$x=0$
$x-3=0 \rightarrow x=3$

になるよ。
$x^{2}=\mathrm{ax}$ の練習問題
$x^{2}=-5 x$ を解きなさい。

まず（右辺）の $-5 \times$ を移項しよう。
$x 2=-5 x$
$x 2+5 x=0$

次に共通因数 \times でくくろう。
$x^{2}+5 x=0$
$x(x+5)=0 \leftarrow$ 展開したら上の式に戻ることは確認しておこう。

この式って
$x \times(x+5)=0$ のことだから，
$x=0$ になるか，$x+5=0$ になればいいよね。

だから 2 次方程式の解は
$x=0$
$x+5=0 \rightarrow x=-5$

になるよ。

「因数分解を使った二次方程式の解き方」まとめ

$(x-a)(x+b)=0$ のように因数分解できるとき
解は $x=a, ~ x=-b に な る 。 ~$

方程式の問題で「両辺を文字で割る」ことは文字が 0 になるかもしれないため，しては いけないことに注意しよう。

