三平方の定理とは？
 公式の証明と問題の解き方をわかりやすく解説

直角三角形の 3 辺の長さについて成り立つ関係の証明

直角三角形の 3 辺の長さには大切な関係があるんだ。 どんな関係があるかを確かめていこう。

確かめる方法はたくさんあるんだけど3つだけ紹介するね。

直角三角形の 3 辺の長さについて成り立つ関係の証明（1）

次のような直角三角形があったとしよう。わかりやすくするために線を引いているよ。

ここで，直角三角形の3つの辺を1辺とする正方形を作っていこう。

「直角三角形の周りにできた3つの正方形」は小さい三角形が何こ分かを数えると次の通りにな るよ。

赤の正方形…16個
青の正方形…16個
緑の正方形…32個
\rightarrow 赤の正方形＋青の正方形＝緑の正方形になっていることがわかるね。

では，直角三角形の3辺の長さがa，b，cだとしよう。

3つの正方形の面積は

赤の正方形•• a^{2}
青の正方形 $\cdot \cdots b^{2}$
緑の正方形 $\cdots c^{2}$

になるよね。

赤の正方形＋青の正方形＝緑の正方形だったから，
$a^{2}+b^{2}=c^{2}$
という関係が成り立つね。

直角三角形の長さについて成り立つ関係を見つけられたね。他の方法でも見つけてみよう。

直角三角形の3辺の長さについて成り立つ関係の証明（2）

1辺が（a＋b）の正方形と
1辺がc の正方形を使って考えていこう。

2つの正方形を次のように重ねてみたよ。

上の図からわかる面積

- 青の正方形全体の面積… $(a+b)^{2}$
- 黄色の正方形の面積 $\cdots c^{2}$
- 下に示した直角三角形 1 つ分の面積 $\cdots a \times b \div 2=\frac{a b}{2}$

これらの面積を使って，3辺の長さの関係を見つけよう。

下の図の意味はわかるかな？
青の正方形から，黄色の正方形を引いたら，赤の直角三角形4こ分になることを表しているよ。

この関係を文字で表してみよう。

青の正方形－黄色の正方形＝赤の直角三角形4こ分
$(a+b)^{2}-c^{2}=\frac{a b}{2} \times 4 \leftarrow$ 直角三角形4こ分だから「 $\times 4 」$
$(a+b)^{2}$ を展開して，$\frac{a b}{2} \times 4$ を計算しよう。
$(a+b)^{2}-c^{2}=\frac{a b}{2} \times 4$
$a^{2}+2 a b+b^{2}-c^{2}=2 a b \leftarrow$ 両辺に $2 a b$ があるから消えるよ。
$a^{2}+b^{2}-c^{2}=0 \leftarrow \Gamma-c^{2}$ 」を右辺に移項しよう。
$a^{2}+b^{2}=c^{2}$

さっきと同じように
$a^{2}+b^{2}=c^{2}$
という関係が導けたね。

最後にもう1つの方法でも証明してみよう。

直角三角形の3辺の長さについて成り立つ関係の証明（3）

合同な直角三角形を2つ組み合わせてみよう。

次のように線を引くと，新たに直角三角形が出来上がるよ。

3つの三角形の面積と全体の台形の面積を求めよう。

上の図からわかる面積

青の直角三角形と黄色の直角三角形の面積 $\cdots a \times b \div 2=\frac{a b}{2}$
緑の直角三角形の面積 $\cdots c \times c \div 2=\frac{c^{2}}{2}$
全体の台形の面積は下のように求められるよ
台形の面積の公式
$($ 上底 + 下底）\times 高さ $\div 2$
$=(a+b) \times(a+b) \div 2$
$=(a+b)^{2} \div 2$
$=\frac{(a+b)^{2}}{2}$

高さ

下の図の意味はわかるかな？
青の直角三角形と黄色の直角三角形と緑の直角三角形をたしたら，茶色の台形になることを表し ているよ。

この関係を文字と式で表してみよう。

青の直角三角形＋黄色の直角三角形＋緑の直角三角形＝茶色の台形 になるから，
$\frac{a b}{2}+\frac{a b}{2}+\frac{c^{2}}{2}=\frac{(a+b)^{2}}{2}$

すべて分母が2になっているから，両辺を 2 倍しよう。
$\frac{a b}{2} \times 2+\frac{a b}{2} \times 2+\frac{c^{2}}{2} \times 2=\frac{(a+b)^{2}}{2}$
$a b+a b+c^{2}=(a+b)^{2}$
$(a+b)^{2}$ を展開して式を整理しよう。
$a b+a b+c^{2}=(a+b)^{2}$
$a b+a b+c^{2}=a^{2}+2 a b+b^{2}$
$2 a b+c^{2}=a^{2}+2 a b+b^{2} \leftarrow$ 両辺に「2ab」があるから消すよ。
$c^{2}=a^{2}+b^{2}$

さっきと同じように
$a^{2}+b^{2}=c^{2}$
という関係が導けたね。

三平方の定理

直角三角形の3辺の長さについて成り立つ関係を3パターンで証明してきたね。直角三角形の3辺の長さをa，b，cとすると
$a^{2}+b^{2}=c^{2}$
という関係が成り立つよ。これを「篗へ平方の定理」というんだ。

a

名前からしてなんとなくイメージできないかな？
「三」っていうのは，「3辺」のこと
「平方」っていうのは，「2乗」のこと
だから，3辺の2乗の性質ってことだね。
ちなみにだけど，「四平方の定理」っていうのもあるんだよ。
「四」だから，「4辺」になるんだよ。
イメージ $O^{2}=\Delta^{2}+\diamond^{2}+\nabla^{2}$

三平方の定理

－直角三角形の3辺の長さをa，b，cとすると

$$
a^{2}+b^{2}=c^{2}
$$

－ギリシャの数学者ピタゴラスにちなんで，「ピタゴラスの定理」とも言われている （ピタゴラスが発見したかは定かではない）

三平方の定理を覚えることは簡単だよね。
テストでもこの定理を使った問題が出るので，次の練習問題にチャレンジしてできるようにしておこ う。

三平方の定理を使った問題

次の直角三角形でメの長さを求めなさい。

三平方の定理 $a^{2}+b^{2}=c^{2}$ に数字や文字を当てはめて $4^{2}+3^{2}=x^{2}$

2乗の計算をして×を求めよう。
$4^{2}+3^{2}=x^{2}$
$16+9=x^{2}$
$25=x^{2}$
$x^{2}=25$
$x=-5,+5$

長さにマイナスはないから，×の長さは5と求めることができるよ。

直角三角形の場合，2辺がわかったら残りのl辺が求められるというすごい性質なんだよ。

三平方の定理 $a^{2}+b^{2}=c^{2}$ に数字や文字を当てはめて
$5^{2}+2^{2}=x^{2}$

2乗の計算をして×を求めよう。
$5^{2}+2^{2}=x^{2}$
$25+4=x^{2}$
$29=x^{2}$
$x^{2}=29$

2乗して29になる整数はないから，ルートを使って表そう。
$x^{2}=29$
$\mathrm{x}=-\sqrt{29}, ~ \sqrt{29}$
長さにマイナスはないから，xの長さは $\sqrt{29}$ と求めることができるよ。

今までは斜辺がxだったんだけど，今度は違う辺がxになっているよ。ただやることは同じだよ。

三平方の定理 $a^{2}+b^{2}=c^{2}$ に数字や文字を当てはめて
$5^{2}+x^{2}=7^{2}$

2乗の計算をして×を求めよう。
$5^{2}+x^{2}=7^{2}$
$25+x^{2}=49$
$x^{2}=49-25$
$x^{2}=24$
$x= \pm \sqrt{24}$
$x= \pm 2 \sqrt{6}$

長さにマイナスはないから，×の長さは $2 \sqrt{6}$ と求めることができるよ。

三平方の定理の問題の解き方

－直角三角形の3辺の長さをa，b，cとして，
$a^{2}+b^{2}=c^{2}$ に当てはめる
－cは直角三角形の斜辺になる

三平方の定理は直角三角形にしか使えないから，他の三角形で使ったりしないようにしようね。

三平方の定理（ピタゴラスの定理）まとめ

三平方の定理

－直角三角形の3辺の長さをa，b，cとすると
$a^{2}+b^{2}=c^{2}$
－ギリシャの数学者ピタゴラスにちなんで，「ピタゴラスの定理」とも言われている（ピタゴラス が発見したかは定かではない）

三平方の定理の問題の解き方

－直角三角形の3辺の長さを $a, ~ b, ~ c と し て, ~$
$a^{2}+b^{2}=c^{2}$ に当てはめる
－cは直角三角形の斜辺になる

a

