「命題と条件」とは？意味と真偽の見分け方を わかりやすく解説

命題と条件とは

今回の学習では，「命題と条件」という範囲を勉強するんだけど，今まで勉強してきた数学とは だいぶ違う印象を受けると思うんだ。

数学を深く学んでいくと，論理的に話を組み立て，考え，表現することが必要になるんだ。今日 はその第一歩だと思ってほしい。いよいよ高校数学も本格的になってきたなって感じがするね！

今回の話だけを聞くと「なんでそんなことを考える必要があるの？」つて思うかもしれないけ ど，これはこの先の数学で必要なんだな，って思って読んでほしいな。

この単元は，「初めて学ぶ人」と「もっと先の数学を勉強していて，この単元の復習をする人」 で，読んでほしい内容を分けて説明するよ。

「初めて学ぶ人」も，全部の文章に目を通してもらいたいけれど，「復習する人」のための内容 は，深く考えすぎずにサラッと読み飛ばしてくれていいよ。この単元を初めて学ぶときは，あま りこだわり過ぎてしまうと，こんがらがっちゃうんだ。

だから，「へえ～，そんな風に考えるんだ」つていうくらいの理解でOK！
「復習する人」のための内容は，四角で囲っておくから参考にしてね！

命題とは

【教科書の説明】
一般に，正しいか正しくないかが定まる文や式を命題という。
命題が正しいとき，その命題は真である，または成り立つという。また，命題が正しくないと き，その命題は偽である，
または成り立たないという。
正しいか正しくないかが定まらない分野式は命題ではない。
教科書の文章を読むと，命題っていうものは，「正しい」つて決められるかどうかが大事なんだ ね。
曖昧なものや，人によって感じ方が違うようなものは命題とは言わないんだ。

いくつか例を見てみよう。

「富士山の高さは 3776 m 」だなんて，数学っぽくなくても命題なの？とびっくりしてしまうよ ね。
命題は，「正しい」か「正しくない」かがハッキリするならOKなんだ。
でも，「1 $+2=5 」$ 」て，間違っているよ！？と思う人もいるよね？
「間違っている」ということは，「正しくない」と分かる式だという事なんだ。正しくないと決 まるから，「1＋2＝5 」は命題で，そして「偽」ということなんだよ。

命題は，正しいときは真，正しくないときは偽，と言うんだよ。

条件とは

【教科書の説明】
変数を含む文や式で，その変数に値を代入した時に真偽が決まる文や式を条件という。

「正しい」か「正しくない」かが決まる文が命題って言うってことはわかったよ！ そこで，疑問なんだけど，「2x＝6」みたいな式はどうなるのかな？

たしかに，「2x＝6」は，「x＝3」なら正しいけど，「 $x=1 」$ だと正しくないよ ね。こういう時はどうするんだろう。

＂「2x＝6」は，「x＝3」なら正しいけど，「x＝1」だと正しくない＂というよう に，×の値によって真偽が変わる文章は条件と言うんだ。

命題「 $\boldsymbol{p} \Rightarrow \boldsymbol{q} 」$
命題には，「○○ならば $\Delta \Delta 」$ 」いう形になるものが多いんだよ。

「×は1と3の間にある数」 ならば 「×は5より小さい数」

これは命題かな？
まず，真か偽か決められるか見てみよう。

「×は1と3の間にある数」
\rightarrow（例）「2」や「2．5」

ならば

「×は5より小さい数」
$\rightarrow 5$ より小さい数

1 と3の間にある数なら，確実に5よりは小さいから，「真」だね。真偽が決まったということは，これは命題と言えるってことだね。

こういう形の文章の時，「仮定」 \Rightarrow 「結論」というよ！

復習する人にポイント解説

ところで，$p \Rightarrow q$ の文章をもう一度見返して欲しいんだけど，p，aはそれぞれ，「条件」であることが分かるかな？
仮定にあたる，「×は1と3の間にある数」だけを抜き出すと，×の値によって，真偽が変わるね。
だから，仮定だけに注目すると，それは「条件」であることが分かるし，同じように結論 もまた「条件」になっている。
$p \Rightarrow q$ の形の命題は，「ある条件」ならば「別の条件」という文や式が，真か偽かを考え ているってことだね。

命題「 $\boldsymbol{p} \Rightarrow \boldsymbol{q}$ 」と集合

さっきの命題を，数直線に書いてみてほしいんだ。
仮定を青，結論を赤にして書いてみるね。

横にはベン図を書いてみたよ。何か気づくことはあるかな？
そう，数直線も，ベン図も，青が赤にすっぽり包まれているね。

こんな風に，仮定（青）が結論（赤）にすっぽり包まれている時，命題は真になるんだ！命題と集合の考え方を説明するために，3つの例をあげてみよう。

例1

$p_{1}: n$ は 4 の倍数 $\Rightarrow q_{1}:$ nは偶数

例2
p_{2} ：nは2の倍数 $\Rightarrow q_{2}$ ：nは偶数

例3
$p_{3}: n$ は3の倍数 $\Rightarrow q_{3}:$ nは偶数

どれが真か，わかるかな？
仮定（青）がすっぽり包まれているのは，例！だから，例！は真だね！

例1
$p_{1}:$ nは 4 の倍数 $\Rightarrow q_{1}:$ nは偶数

$$
p_{1} \Rightarrow q_{\|} \text {は真, }
$$

例2はどうかな？

重なっている…と言うか，例2の仮定と結論の輪っかは，まったく同じだよね。 でもこれも，すっぽり包まれていると言っていいんだ。
だから，これも真だね。
そして，例2のように，輪っかがまったく同じで重なる時，仮定と結論を結ぶ矢印である $「 \Rightarrow 」$ が，$p \Rightarrow q, ~ p \Leftarrow q, ~ つ て$ 感じで，両方の向きで真なんだ。こういう時は，まとめ て「 $\boldsymbol{p} \Leftrightarrow \boldsymbol{q} 」$ 」て書くよ。

例2

$p_{2}:$ nは2の倍数 $\Rightarrow q_{2}:$ nは偶数

$$
\begin{gathered}
p_{2} \Rightarrow q_{2} \text { は真 } \\
p_{2} \Leftarrow q_{2} \text { は真 } \\
\quad p_{2} \Leftrightarrow q_{2}
\end{gathered}
$$

例3みたいに，包まれないで，はみ出している部分がある時はなんて言うのだろう？
こういう時，命題は偽なんだ。

「3の倍数」ならば「偶数」っていうのは，「正しくない（＝ではない）」よね。
正しくないから命題は偽と言える。
命題が偽であることを示すためには，はみ出たところに入っているものをひとつ挙げれば いいんだ。

つまり，「仮定には3があるから，この命題は偽です」という感じ。 この「3」のことを，反例というよ。

「例3には3という反例があるので偽です！」
なんだか裁判の「異議あり！」みたいでかっこいいね。

例 3
 $p_{3}:$ nは3の倍数 $\Rightarrow q_{3}: n$ は偶数

まとめ

「命題と条件」について，今回学習したことをまとめたよ。

「命題」とは
－一般に，正しいか正しくないかが定まる文や式を命題という。
\rightarrow 「正しい」か「正しくない」かがハッキリするならOK
－命題が正しいとき，その命題は「真」である，または「成り立つ」という。また，命題が正しくないとき，その命題は「偽」である，または「成り立たない」という。 －正しいか正しくないかが定まらない分野式は命題ではない。

「条件」とは

- 変数を含む文や式で，その変数に値を代入した時に真偽が決まる文や式を条件という。
- 命題には，「○○ならば $\Delta \Delta$ 」という形になるものが多く，このような形の文章の時，

「仮定」 \Rightarrow 「結論」という。

【ベン図での命題の真偽の見分け方】

- 仮定（青）が結論（赤）にすっぽり包まれている時，命題は真になる。
- 輪っかがまったく同じで重なる時，仮定と結論を結ぶ矢印である「 \Rightarrow 」は $p \Rightarrow q$ ， $p \Leftarrow q, ~ と い う よ う に, ~$ 両方の向きで真である。このような時は，まとめて「 $\boldsymbol{p} \Leftrightarrow \boldsymbol{q} 」$ と書く
- 包まれないで，はみ出している部分がある時は命題は偽である。
- 命題が偽であることを示すためには，はみ出たところに入っているものをひとつ挙げれ ばよい。この「はみ出たところに入っている」ものを「反例」という。

