「平行四辺形の定義と性質」平行四辺形の定理を証明してみよう

平行四辺形の対辺とは

平行四辺形の辺や角の名前について確認していこう。最初に，辺の名前から確認していくよ。四角形の向かい合う辺を対辺（たいへん）と呼ぶよ。

上の図の $A D$ の対辺は $B C$（赤い辺どうしが対辺），$A B$ の対辺は $D C$（青い辺どうしが対辺）になるよ。

平行四辺形の対角とは

次に，角の名前を確認しよう。
四角形の向かい合う角を対角（たいかく）と呼ぶよ。

上の図の $\angle B A D$ の対角は $\angle D C B$（×の印がついた角どうしが対角），$\angle A B C$ の対角は $\angle C D A$（ の印がついた角どうしが対角）になるよ。

平行四辺形の定義

ここから平行四辺形について，より詳しく勉強していこう。 まずは，平行四辺形の定義から確認しよう。

平行四辺形の定義 2 組の対辺がそれぞれ平行な四角形

これまで登場した図形と同じように，漢字で書いたままの定義「平行な四つの辺がある四角形」だね。

平行四辺形の性質（定理）

次に，平行四辺形の3つの定理について確認しよう。

平行四辺形の定理
（1）平行四辺形では，2組の対辺はそれぞれ等しい

$A B=D C, ~ A D=B C$ ということだよ。
（2）平行四辺形では，2組の対角はそれぞれ等しい

$\angle \mathrm{ABC}=\angle \mathrm{CDA}, ~ \angle \mathrm{BAD}=\angle \mathrm{DCB}$ ということだよ。
（3）平行四辺形では，対角線はそれぞれの中点で交わる

$\mathrm{BO}=\mathrm{DO}, ~ \mathrm{AO}=\mathrm{CO}$ ということだよ。

それぞれの定理は，定義を使って証明することができるから確認してみよう！

平行四辺形の性質の証明

（1）平行四辺形の 2 組の対辺がそれぞれ等しいことの証明四角形 $A B C D$ が $A B / / C D, ~ A D / / C B$ の平行四辺形ならば， $A B=C D, ~ A D=C B$ であることを証明しなさい。

平行四辺形 $A B C D$ の頂点 B と頂点 D を結んで，$\triangle B A D$ と $\triangle D C B$ が合同であることを使 って証明していくよ。

$\triangle B A D$ と $\triangle D C B$ において

仮定の $A B / / C D$ から，平行線の錯角が等しいので，
$\angle A B D=\angle C D B \cdot$ ••1
仮定の $A D / / C B$ から，平行線の錯角が等しいので，
$\angle \mathrm{ADB}=\angle \mathrm{CBD} \cdot$ ••（2）
BDは共通•••③

（1），（2），（3）より，I 組の辺とその両端の角がそれぞれ等しいから
$\triangle B A D \equiv \triangle D C B$
合同な図形の対応する辺は等しいから
$A B=C D, ~ A D=C B$
よって，平行四辺形の 2 組の対辺はそれぞれ等しい。
（2）平行四辺形の 2 組の対角がそれぞれ等しいことの証明
四角形 $A B C D$ が $A B / / C D, ~ A D / / C B$ の平行四辺形ならば，$\angle A B C=\angle C D A$ ， $\angle B A D=\angle D C B$ であることを証明しなさい。

平行四辺形の辺 $B C$ の延長線上に点 E ，点 F をとって証明していくよ。

仮定の $A D / / B C$ から，平行線の同位角は等しいので，
$\angle A B C=\angle D C E \cdot$ ••1
また平行線の錯角は等しいので，
$\angle D C E=\angle C D A \cdot \cdot$ • 2
（1），（2）より
$\angle A B C=\angle C D A$
※下の左側の図で確認しよう。

同様に，平行線の同位角は等しいので，
$\angle D C B=\angle A B F \cdot$ ••（4）
また平行線の錯角は等しいので，
$\angle A B F=\angle B A D \cdot$ ••
（4），（5）より
$\angle B A D=\angle D C B \cdot$ •（6）
※下の右側の図で確認しよう。

（3），（6）より平行四辺形の 2 組の対角はそれぞれ等しい。

③平行四辺形の対角線がそれぞれの中点で交わることの証明四角形 $A B C D$ が $A B / / C D, ~ A D / / C B$ の平行四辺形ならば， $\mathrm{AO}=\mathrm{CO}, ~ \mathrm{BO}=\mathrm{DO}$ であることを証明しなさい。

平行四辺形 $A B C D$ の頂点 B と頂点 D を結び，頂点 A と頂点 C を結び，その交点を O と して，$\triangle \mathrm{ABO}$ と $\triangle \mathrm{CDO}$ が合同であることを使って証明していくよ。

$\triangle \mathrm{ABO}$ と $\triangle \mathrm{CDO}$ において

仮定の $A B / / C D$ から，平行線の錯角は等しいので，
$\angle \mathrm{ABO}=\angle \mathrm{CDO} \cdot$ ••1
仮定の $A B / / C D$ から，平行線の錯角は等しいので，
$\angle B A O=\angle D C O \cdot$ ••（2）
平行四辺形の対辺は等しいので，
$A B=C D \cdot$ ••（3）

（1），（2），（3）より，I 組の辺とその両端の角がそれぞれ等しいから
$\triangle A B O \equiv \triangle C D O$
合同な図形の対応する辺は等しいから
$A O=C O, ~ B O=D O$
よって，平行四辺形の対角線はそれぞれの中点で交わる。

二等辺三角形の定義•定理と同じように証明の中で「すでに正しいと認められていること がら」として使うことができるから，しっかりと覚えておこう！

平行四辺形の定義と性質まとめ

- 平行四辺形の向かい合う辺を対辺，向かい合う角を対角という
- 平行四辺形の定義

2 組の対辺がそれぞれ平行な四角形
－平行四辺形の性質（定理）（1）
平行四辺形では，2組の対辺はそれぞれ等しい
－平行四辺形の性質（定理）（2）
平行四辺形では，2組の対角はそれぞれ等しい
－平行四辺形の性質（定理）（3）
平行四辺形では，対角線はそれぞれの中点で交わる

