証明とは？平行線の性質を使って
 三角形の角の性質を証明してみよう

「証明」とは

新しい単元として「証明（しょうめい）」がスタートするよ。

証明って言葉を聞くとなんだか難しそうな感じがするよね。 まずは証明の言葉の意味から確認しよう。

証明とは，本当かどうかわからないことを，
事実（すでに正しいとわかっていること）をつかって説明すること

算数•数学で出てきた円の面積の公式（半径 \times 半径 $\times \pi$ ）を覚えているかな？
「公式だから覚えるのが当たり前」と思っている人がいるかもしれないけれど，実際には この公式も正しいことが証明されたから使うことができるんだ。

円の面積の公式について

さっきの証明の言葉の意味から，
本当かどうかわからないこと（円の面積の公式が π r 2）
すでに正しいとわかっていること（長方形の面積の求め方が「たて×横」）
として説明するね。
（1）半径がrの円を64等分するよ。

②） 4 等分したおうぎ形を交互に並べるとたての長さが円の半径 r ，横の長さが円周の半分の π r の長方形に近い形になるよ。

長方形の面積の「たて×横」に，上のおうぎ形を交互に並べた図の
「たてを r ，横を πr 」として代入すると，$r \times \pi r=\pi r 2$ となって円の面積の公式を導くことができるんだ。
※厳密には，高校生で習う数学の知識を使って証明するよ。

正しいと思えることでも，証明して説明できなければ間違っている可能性があるんだ。

実際にこれまで習った三角形の内角の性質について，正しいといえるか証明してみよう。

三角形の内角の性質を証明してみよう

三角形の内角の和は180 になる，ということは小学校から習ってきた当たり前のこと だけれども，本当に正しいと言えるか次の例題を使って確認しよう。

例題

下の図のように，$\triangle A B C$ の頂点Cを通り，辺ABに平行な直線CEをびきます。
この図を利用して，三角形の内角の和が 180° であることを証明しなさい。

まずは，同じ角の大きさを見つけるところからスタートしよう。
また，辺BCを延長したところに点Dを作って証明を進めていくよ。

$A B / / E C よ り, ~$ 平行線の錯角（アルファベットのZと逆Zの形をしたところにできる角）は等しいから
$\angle B A C=\angle E C A \cdot \cdot \cdot 1)$
$A B / / E C よ り, ~$ 平行線の同位角は等しいから
$\angle A B C=\angle E C D \cdot$ ••（2）

一直線が作る角の大きさは180 だから
$\angle A C B+\angle E C A+\angle E C D=180^{\circ}$
（1）と（2）から
赤い がついた 2 つの角（ $\angle B A C と \angle E C A$ ）
黒い■がついた2つの角（ $\angle A B C$ と $\angle E C D$ ）
は，それぞれ大きさが等しいので，$\angle B A C+\angle A B C+\angle A C B=180^{\circ}$ となるから，三角形の内角の和は180 ${ }^{\circ}$ になることが証明できるんだ。

三角形の外角の性質を証明してみよう

三角形の外角の性質について確認しよう。
※外角について忘れてしまった人は，「多角形の内角の和と外角の和の求め方をわかりや すく解説」で確認しよう。

上の三角形の内角の和の証明から，

三角形の外角は，それととなり合わない2つの内角の和に等しい，という性質を導くこと ができるんだ。

証明で使った上の図から，$\angle B A C+\angle A B C=\angle E C A+\angle E C D と な る よ ね 。 ~$ つまり，

$\angle A C D=\angle B A C+A B C$ となるんだ。

この三角形の外角の性質は，角度計算の問題でもよく使う性質だから問題演習をしてマス ターしよう。

問題

下の図で，$\angle \chi$ の大きさを求めなさい。
（1）

（2）

（1）
三角形の外角の性質を使うと，$\angle 66^{\circ}+\angle 35^{\circ}=\angle \chi$ という式を作ることができるか ら，あとは計算を進めていこう。
$\angle x=101$ •
（2）
（1）と同じように，三角形の外角の性質を使うと，$\angle 41^{\circ}+\angle \chi=135^{\circ}$ という式 を作ることができるね。
$\angle \chi=94^{\circ}$
別な解き方として，三角形の内角の和が1 80° という性質を使った方法を（2）を使っ て説明するね。

135° ととなり合う角度の大きさは，180－ $135^{\circ}=45^{\circ}$

三角形の内角の和は，180 だから，$\angle \chi+\angle 41^{\circ}+\angle 45^{\circ}=180^{\circ}$ これを計算すると，$\angle x=94^{\circ}$ と求めることができるよ。

三角形の外角の性質を使う解き方に比べて，計算量が多くなってしまうので，計算ミスを する可能性が高くなるから注意しよう。

