「文字を使った式の問題」
 解き方を解説（パターン7つ）

文字を使った式とは

なんのために文字を使った式なんて勉強するの？
これから方程式というのを勉強するのに，「いろいろな数量」を簡単に文字で シンプルに表さなきゃいけなくなるから。

ザックリいうと
「文章」を，「文字と数字と記号と単位だけ」にすればいい

文字を使った式のつくり方（基本）

例えば，80円のチョコレートを×個買ったときの金額を，「文字と数字，記号と単位」 だけで表してみよう。
ポイントは，「それぞれの数字や文字が，どういう関係か」を考えるんだ。
もし 3 個買った場合の値段は， 80×3 で求められるよね。
つまり，チョコレートひとつの値段の「80円」に買った数をかけると，金額がわかる関係。
\times 個買ったときもこの関係に当てはまるから，x個買った時の金額は， $80 \times \times$ 円
になるね。
これで「数字（ 80 ）」と，「文字（ x ）」と，「記号（ x ）」と「単位（円）」 だけになったね。
でもここで，ルールが3つあるんだ。

文字を使った式を作るときのルール3つ

1．掛け算は「×」を省略する。
例： $80 \times \times$ は $80 \times$
2．文字と数では，数のほうを先に書く。
例：×80ではなく，80×
3．割り算は，分数を使って表す。
例： $80 \div \times$ ではなく，$\frac{80}{x}$

ところで，割り算が分数になるのがいまいちピンと来ないということもあるよね。

「割り算＝分数」がピンと来ない場合は読んでみよう

例えば，1 枚のピザを 2 人で分けたら，半分になるよね。
半分って，$\frac{1}{2}$ だよね。
$\frac{1}{2}$ というのは，「1（つのもの）を，2で分ける（割る）」という意味なんだよ。

この「割り算を分数で表す」というのは，とても重要なワザなので，絶対にマスターして ね！！！

このルールを守って，80××の「×（かける）」は省略して，数字である80は文字の ×よりも前に書くから，
$80 \times$ 円
になるんだ。
$80 \times$ というのは， $80 \times \times$ のことなんだね。
こうやって，「ことばで表されるいろいろな数量」を，文字を使ってルールを守りながら「数字と文字と記号と単位だけで表す」というのがここで学習する内容だよ。
いろいろな数量を文字をつかった式で表すんだけど，よく出るパターンが 7 つあるよ。 それぞれ例をチェックしてみよう。

パターン（1）

たし算や引き算を使って表す

たし算の関係

例：「50ページまで読んだ本を，さらに×ページ読んだ時の読み終わったページ数」関係は？
50 ページに，\times ページを加えればよい

答え：50＋xページ

引き算の関係

例：「600円から×円を使ったときの残金」

関係は？
600 円から使った×円を引くと，残金が求められる。

答え：600－x 円

パターン②

かけ算やわり算を使って表す

かけ算の関係

例：「80円のチョコを×個買った時の金額」

関係は？
金額は，80円×買った数
$80 \times$ 円 円
でも「×（かける）」は省略するので，

答え：80×円

わり算の関係

例：「120個のチョコを，クラス×人で分けたときの1人あたりのチョコの数」

関係は？
120個を，分ける人数で割る
120
だけど「割る」は分数で表すので，
答え：$\frac{120}{\mathrm{x}}$ 個

パターン（3）

2 つの文字が登場する

例：「80円のチョコx個と，100円のジュースy本を買ったときの金額」

関係は？
80 円×買った数と，100円×買った数を加える

答え： $80 x+100 y$ 円

パターン（4）図形の面積を表す

例：「底辺が $x \mathrm{~cm}$ で，高さが $y \mathrm{~cm}$ の平行四辺形の面積」

関係は？
平行四辺形の面積の求めかたは「底辺×高さ」

答え：xy cm^{2}

例2：「底辺が $\times \mathrm{cm}$ で，高さが ycm の三角形の面積」

関係は？
三角形の面積のもとめかたは「底辺×高さ $\div 2$ 」

答え：$\frac{x y}{2} \mathrm{~cm}^{2}$

パターン⑤

異なる単位のものを揃える

例：「x km進んで，さらにymi進んだ時の，進んだ距離の合計」

関係は？
それぞれの進んだ距離を足す。
だけど，xは「km」で，yは「m」だから，単位を揃えなければいけない。
そのまま「x＋y」なんてしてしまうとダメだよね。
l km＝1000mだから，xはyの1000倍だね。
だからyをそのままにして，xだけ। 000 倍すればいいよ。

答え：1000x＋ym
※またはyは×の1000分の1と考えてx＋0．001yでもよいよ。
さらに，0．001は1000分の1のことだから，$x+\frac{\mathrm{y}}{1000} \mathrm{~cm}^{2} て ゙ も よ い 。 ~$

パターン（割合を表す

「割合」という言葉や「 \％」が登場すると「難しい！」と拒否反応が出てしまう子が多い けれど，よく出る問題だから頑張ろう。
例：「x人いるクラスで，サッカー部に入っているのはそのクラスの 5% だったとき，そ の人数」

関係は？
\times の 5% が求める人数。
5% というのは，分数で表すと $\frac{5}{100}{ }^{\circ}$
ということは，\times に $\frac{5}{100}$ をかければいい。
だから答えは $\frac{5}{100} \times$ 人。
※または，5 \％は「0． 05 をかける」でもよいので，
0． $05 \times$ 人 でもOK。
\％ではなく，「○割」と聞かれた場合は？
1割は। 0% のこと。
1．5割なら15 \％で，2割なら 20% だね。
あとは同じように \％を分数や少数に直して計算しょう。

パターン（7）

速さ・時間•道のりの関係を使う

例：「xkmを40分で歩いたときの速さ」
速さ・時間•道のりの問題は，「み・は・じ」の関係を覚えていれば大丈夫！

「み・は・じ」の公式

関係は？
道のりを時間で割ると速さが求められる。

$$
\begin{aligned}
& x \div 40 \\
& \Gamma \div 」 \text { を分数で表すので, }
\end{aligned}
$$

答え：$\frac{x}{40} \mathrm{~km} /$ 分

例2：「時速 5 km で×時間走った時の道のり」

関係は？
速さと時間をかけると道のりが求められる。
$5 \times x$
$「 \times 」 を$ 省略するので，
$5 \times \mathrm{km}$

例3：「xkmを分速100mで走る時にかかる時間」

関係は？

道のり割る速さで，時間が求められる。
でもここで注意するのが，「単位が揃っているかどうか」。
kmとmが混ざっているね。
ということは，どちらかに揃えないといけないね。
l km＝1000mなので，xを1000倍するよ。
（または। 00 m を1000で割る）
1000×100
「 \div 」は分数で表すので，
$\frac{1000 \mathrm{x}}{100}$

約分して，答えは1 $0 \times$ 分

「文字を使った式の作り方」まとめ

> 「文字を使った式の作り方」まとめ

いろいろな数量は，文字を使って表す

- ルール（1）掛け算は省略する
- ルール（2）割り算は分数で表す
- ルール③数字と文字では，数字が前になる
- 作り方パターン（1）たし算や引き算を使う

例：50ページ読んだ本を毎日5ページずつx日読む $\rightarrow 50+5 x$
例：600円からx円使う $\rightarrow 600$－\times 円
－パターン（2）かけ算や割り算を使う
例：80円を×個 $\rightarrow 80 \times$ 円
例：1 20 個を×人で $\rightarrow \frac{120}{\mathrm{x}}$ 個
－パターン（3）文字を2つ使う
例：80円のチョコx個と，100円のジュースy本の金額 \rightarrow
$80 x+100 y 円$
－パターン（4）図形の面積を表す
例：長方形など \rightarrow 底辺 $x \mathrm{~cm}$ かける高さ $y \mathrm{~cm} \rightarrow x y \mathrm{~cm}$
例：三角形など \rightarrow 底辺 $x \mathrm{~cm}$ かける高さ $\mathrm{ycm} \div 2 \rightarrow \frac{\mathrm{xy}}{2} \mathrm{~cm}^{2}$
－パターン（5）単位を揃える
例：xkmとym \rightarrow
$1 \mathrm{~km}=1000 \mathrm{~m}$ なので，×を1000倍する
－パターン（6）割合を表す
例：\times の $5 \% \rightarrow \frac{5}{100} \times$
－パターン（7）速さ・時間•道のりを求める
「み・は・じ」に当て嵌めて考える。
※単位が揃っているか注意！（時間と分，kmとmなど）

