「平行四辺形の証明」

条件ごとの問題と証明の仕方•書き方を解説

2 組の対辺がそれぞれ平行である条件を使った証明

問題

平行四辺形 $A B C D て ゙, ~ \angle A B C と \angle C D A の 二$ 等分線と辺 $B C$ ，辺 $A D$ の交点をそれぞれ E，Fとするならば，四角形BEDFが平行四辺形であることを証明しなさい。

四角形BEDFに関連する角度に注目して，対辺がそれぞれ平行であることを使って，平行四辺形であることを証明していくよ。
（ $\triangle \mathrm{ABF}$ と $\triangle \mathrm{CED}$ が合同であることを使った方法でも，平行四辺形であることを証明でき るよ。）

証明
仮定から，
$\angle \mathrm{ABF}=\angle \mathrm{CBF}=\frac{1}{2} \angle \mathrm{ABC} \cdot \cdots(1)$
$\angle \mathrm{ADE}=\angle \mathrm{CDE}=\frac{1}{2} \angle \mathrm{CDA} \cdot \cdots$ •（2）
平行四辺形の対角はそれぞれ等しいので，
$\angle \mathrm{ABC}=\angle \mathrm{CDA} \cdot$ ••3
（1），（2），（3）より
$\angle C B F=\angle A D E \cdot$ •（4）

平行四辺形の対辺は平行なのでAD／／BCだから，
FD／／BE•••⑤
平行線の錯角は等しいので，
$\angle A D E=\angle C E D \cdot$ ••6
（4），（6）より
$\angle C B F=\angle C E D \cdot \cdot \cdot 7 ~$
（7）より同位角が等しいので，
BF／／DE•••8
（5），（8）より，2組の対辺がそれぞれ平行なので，四角形BEDFは平行四辺形である。
（4），（6），（7）の求める流れは，下の図を参考にして考えよう。

証明を書き始める前に，わかっていることを図にかくことで，どうやって証明したら良い か考えやすくなるよ。

2 組の対辺がそれぞれ等しい条件を使った証明

問題

平行四辺形 $A B C D て ゙, ~ A H=B E=C F=D G な ら は ゙, ~$ 四角形EFGHが平行四辺形で あることを証明しなさい。

$\triangle \mathrm{AEH}$ と $\triangle \mathrm{CGF}, ~ \triangle \mathrm{BEF}$ と $\triangle \mathrm{DGH}$ の合同を証明して，四角形EFGHの対辺がそれぞれ等 しいことを使って平行四辺形であることを証明するよ。

証明

$\triangle \mathrm{AEH}$ と $\triangle \mathrm{CGF}$ において，
仮定から
$\mathrm{AH}=\mathrm{CF} \cdot$ ••（1）
$B E=D G \cdot$ ••（2）
平行四辺形の対辺は等しいので
$\mathrm{AB}=\mathrm{CD} \cdot$ ••（3）
（2），（3）より
$A B-B E=C D-D G$
$A E=C G \cdot \because(4)$
平行四辺形の対角は等しいので
$\angle \mathrm{HAE}=\angle \mathrm{FCG} \cdot$ ••（5）
（1），（4），（5）より 2 組の辺とその間の角がそれぞれ等しいので，
$\triangle \mathrm{AEH} \equiv \triangle \mathrm{CGF}$
合同な図形の対応する辺は等しいので，
$\mathrm{EH}=\mathrm{GF}$ •••8
また，$\triangle B E F と \triangle D G H に お い て も$ 同様にして，
$\mathrm{EF}=\mathrm{GH} \cdot$ •• 9
（8．（9）より2組の向かい合う辺がそれぞれ等しいので，
四角形EFGHは平行四辺形である。
$\triangle A E H$ と $\triangle C G F, ~ \triangle B E F と \triangle D G H は そ れ そ ゙ れ$ 同じ手順で証明するから，「同様にして」 をうまく使って証明しよう。

2 組の対角がそれぞれ等しい条件を使った証明

問題

平行四辺形EBFDで，EA＝FC，$\angle A B C=\angle C D A な ら は ゙, ~(⿴ 囗 ⿰ 丿 ㇄ 心$ 角形 $A B C D$ が平行四辺形 となることを証明しなさい。

仮定で四角形ABCDの $\angle A B C$ と $\angle C D A$ が等しいことがわかっているから， 2 組の対角が それぞれ等しいことを使って平行四辺形であることを証明するよ。

証明
$\triangle A B E$ と $\triangle C D F に お い て ~$
仮定から
$A E=C F$
平行四辺形の対辺は等しいので，
BE＝DF•••（2）
平行四辺形の対角は等しいので，
$\angle A E B=\angle C F D \cdot$ ••（3）
（1），（2），（3）より
2 組の辺とその間の角がそれぞれ等しいので
$\triangle A B E \equiv \triangle C D F$
合同な図形の対応する角は等しいので，
$\angle B A E=\angle D C F \cdot \cdot \cdot(4)$
一直線が作る角は180 0° となるので，
$\angle B A D=180^{\circ}-\angle B A E \cdot$ •（5）
$\angle B C D=180^{\circ}-\angle D C F \cdot \cdot$（6）
（4），（5），（6）より
$\angle B A D=\angle B C D \cdot \cdot \cdot 7$
仮定から
$\angle \mathrm{ABC}=\angle \mathrm{CDA} \cdot$ ••8
（7），（8）より
2組の対角がそれぞれ等しいので四角形ABCDは平行四辺形である。
$\angle B A D と \angle B C D$ が等しくなる証明（5）から 7 の の部分）については下の図を参考にしなが ら考えよう。

応用問題では，この問題のように「ある角から同じ大きさの角を引いて等しいことを証明 する」方法がよく出るから，覚えておこう！

対角線がそれぞれの中点で交わる条件を使った証明

問題

平行四辺形 $A B C D て ゙$ 対角線 $B D$ 上に $B E=D F$ となる点E，Fとするならば，四角形AECF が平行四辺形となることを証明しなさい。

問題の図に対角線BDがあるから，対角線ACも引いた図を使って考えよう。

証明
平行四辺形ABCDの対角線の交点をOとする。
平行四辺形の対角線は，それぞれの中点で交わるから
$O A=O C \cdot \cdot \cdot 1$
$O B=O D \cdot$ ••（2）
仮定から
$B E=D F \cdot$ ••（3）
（2），（3）から
$O B-B E=O D-D F$
$\mathrm{OE}=\mathrm{OF} \cdot$ ••（4）
（1）（4）より
対角線がそれぞれの中点で交わるから
四角形AECFは平行四辺形である。

平行四辺形になることを証明する問題では，「対角線がそれぞれの中点で交わる条件」が よく使われるよ。

I組の対辺が平行でその長さが等しい条件を使った証明

問題
平行四辺形ABCDでBE＝DFとするならば，四角形AECFが平行四辺形となることを証明しなさい。

仮定で与えられBE＝DFと平行四辺形の対辺が平行であることを使って証明しよう。

証明
仮定から
BE＝DF。
平行四辺形の対辺は等しいので
$B C=D A \cdot \cdot \cdot(2)$
（1），（2）より
$B C-B E=D A-D F$
$E C=F A \cdot \cdot$ •（3）

平行四辺形の対辺は平行なのでAD／／BCだから
AF／／EC
（3），（4）より
1 組の対辺が平行でその長さが等しいので
四角形AECFは平行四辺形である。

平行四辺形になることを証明する問題では，「1組の対辺が平行でその長さが等しい条件」も使われることが多いよ。

応用問題•難問

これまで勉強したことの総まとめとして，平行四辺形になるための条件を使った応用問題 にチャレンジしてみよう！

問題
図のような $A B / / D C て ゙ あ る$ 四角形 $A B C D$ があり，辺 $A D$ の中点をE，CEの延長とBAの延長との交点をFとするならば，四角形ACDFは平行四辺形になることを証明 しなさい。

問題文の「辺ADの中点をE」という部分から，対角線がそれぞれの中点で交わることを使 って証明することが推測できるね。

最初に $\triangle A E F と \triangle D E C$ が合同であることを証明して，四角形ACDFのもう1つの対角線で あるFCの中点がE（FE＝CE）であることを証明する手順で解いていこう。

証明

\triangle AEFと \triangle DECにおいて，
仮定から
$A E=D E \cdot \cdot \cdot(1)$
対頂角は等しいので
$\angle A E F=\angle D E C \cdot$ •（2）
FB／／DCで平行線の錯角は等しいので
$\angle E A F=\angle E D C \cdot \cdot$（3）
（1），（2），（3）から，1 組の辺とその両端の角がそれぞれ等しいので
$\triangle A E F \equiv \triangle D E C$
合同な図形の対応する辺は等しいので
$F E=C E$
（1），（4）より，対角線がそれぞれの中点で交わるので，
四角形ACDFは平行四辺形である。

平行四辺形になるための条件を使った問題は，入試などでも出題されることがある問題だ から，今回紹介した問題を通じて証明問題の解き方をマスターしよう！
また，証明問題は中間点がもらえる可能性があるから，「証明が苦手•••」という人 は，I点でも高い点数を取ることができるように，仮定や図から見てわかることを書い て，解答欄を空欄にせずに粘り強く取り組もう！

