「因数分解の公式一覧」

公式を使った解き方をわかりやすく解説

乗法公式を逆に使って因数分解を解いてみよう

因数分解っていうのは展開の逆のことだったよね。

$$
\begin{array}{ll}
\text { 展開と因数分解のイメージ } \\
(x+2)(x+3)=x^{2}+5 x+6 & \\
& \\
(x+2)(x+3) \rightarrow x^{2}+5 x+6 & \text { 展開 } \\
x^{2}+5 x+6 \rightarrow(x+2)(x+3) & \text { 因数分解 }
\end{array}
$$

展開の学習の時に乗法公式を使ったのを覚えているかな？乗法公式を逆に使うと因数分解 の時に役立つんだよ。
$(x+2)(x+3)$ の展開を考えてみよう。
$(x+a)(x+b)$ のような $(x))(x \quad)$ の形の式を展開すると，$x^{2}+\bigcirc x+\triangle$ になるんだったよ ね。

○には $2+3$ の和が，\triangle には 2×3 の積が入るから

$$
\begin{aligned}
& (x+2)(x+3) \\
& =\underbrace{2+3} \underbrace{2}+0 x+\triangle \\
& =x^{2}+5 \\
& =x^{2}+5 x+6
\end{aligned}
$$

今の流れを逆にやっていくことが因数分解だよね。

$x^{2}+5 x+6$ の因数分解

さっきの展開を逆に考えていこう。
$x^{2}+5 x+6 を(x+\square)(x+乡)$ の形にできたら因数分解の完成だよ。下を見て \square と に当てはまる数 を考えてみよう。

$$
\left\{\begin{array}{l}
(x+\square)(x+\hbar) \\
\square+\hbar \\
=x^{2}+5 x+6 \\
=x^{2}+5 x+6
\end{array}\right.
$$

足して「5」，かけて「6」になる数だから，ロとうにはそれぞれ「2」と「3」がはいることがわかるか な？

$$
\left\{\begin{array}{l}
(x+\square)(x+\hbar) \\
=x^{2}+5 x+6 \\
=x^{2}+5 x+6
\end{array}\right.
$$

だから，$x^{2}+5 x+6$ を因数分解すると，$(x+2)(x+3)$ になるよ。ちなみに $(x+3)(x+2)$ でもOKだよ。 だって，$(x+2)(x+3)$ の間には「 $\times($ かける $) 」$ が省略されていて， $2 \times 3 も 3 \times 2$ も同じだからね。同じような問題をもう一問やってみよう。

$x^{2}+4 x+3$ の因数分解

$x^{2}+4 x+3 を(x+\square)(x+ふ)$ の形にできたら因数分解の完成だよ。 \square と みよう。

$$
\begin{aligned}
& (x+\square)(x+\hbar) \\
& =x^{2}+4 x+3 \\
& =x^{2}+4 x+3
\end{aligned}
$$

足して「4」，かけて「3」になる数だから，口とえにはそれぞれ「1」と「3」がはいることがわかるか な？

$$
\begin{aligned}
& (x+\square)(x+\hbar) \\
& =x^{2}+4 x+3 \\
& =x^{2}+4 x+3
\end{aligned}
$$

だから，$x^{2}+4 x+3$ を因数分解すると，$(x+1)(x+3)$ になるよ。ちなみに $(x+3)(x+1)$ でもOKだよ。

乗法公式を逆に使って因数分解

今まで解いた2問の因数分解は乗法公式lを使った問題だったんだよ。

乗法公式

I．$(x+a)(x+b)=x^{2}+(a+b) x+a b$

上の乗法公式は展開するときに使うものだから，因数分解バージョンに直すと下のようになるよね。 まあ，左辺と右辺を入れ替えただけだけど。

因数分解の公式

I，$x^{2}+(a+b) x+a b=(x+a)(x+b)$

上の「 a 」と「 b 」に当てはまる数を見つけたらOKということだよ。慣れるとすぐに「 a 」と「 b 」に当て はまる数が求められるようになるはず！
（I）
$x^{2}+3 x+2$
$=x^{2}+(a+b) x+a b$

足して「3」，かけて「2」になる数 $\rightarrow 1$ と 2
$=x^{2}+(1+2) x+1 \times 2$
$=(x+1)(x+2)$
（2）
$x^{2}-8 x+12$
$=x^{2}+(a+b) x+a b$

足して「 -8 」，かけて「12」になる数 $\rightarrow-2$ と－ 6
$=x^{2}+(-2-6) x-2 \times(-6)$
$=(x-2)(x-6)$
（3）
$x^{2}+4 x-12$
$=x^{2}+(a+b) x+a b$

足して「4」，かけて「－12」になる数 $\rightarrow-2$ と 6
$=x^{2}+(-2+6) x-2 \times 6$
$=(x-2)(x+6)$

マイナスが入ってくると a と b の数を見つけるのが一気に難しくなるね。

a と bの数を早く見つけるコツ

慣れるまではaとbの数をなかなか見つけられないと思うんだけど，コツがあるんだ。

コツは「かけて○○になる数を先に考える」。

足して○○に数って無限にあるんだけど，かけて○○になる数は少ないんだ。
だから，「かけて○○になる数」で候補を絞って「足して○○になる数」で1つに決めるのがいい よ。

さっきの

足して「4」，かけて「－12」になる数

だったら，「かけてー12」って下の数だけだよ。

$$
\begin{array}{ll}
\text { かけてー। } 2 \text { になる数 } \\
\cdot 1 \times(-12) & \cdot(-1) \times 12 \\
\cdot 2 \times(-6) & \cdot(-2) \times 6 \\
\cdot 3 \times(-4) & \cdot(-3) \times 4 \\
\cdot 4 \times(-3) & \cdot(-4) \times 3 \\
\cdot 6 \times(-2) & \cdot(-6) \times 2 \\
\cdot 12 \times(-1) & \cdot(-12) \times 1
\end{array}
$$

この中で，

「足して4になる数」を見つけたら，速くaとbの数が求められるよね。

因数分解の公式

$x^{2}+(a+b) x+a b$ の因数分解
さっきの因数分解 1 の公式 $「 x^{2}+(a+b) x+a b=(x+a)(x+b)$ 」を知っていれば，ほとんどの問題が因数分解ができちゃうんだよね。

例えば，次のような問題を考えてみよう。
$x^{2}+6 x+9$
$=x^{2}+(a+b) x+a b$

足して「6」，かけて「9」になる数 $\rightarrow 3$ と 3
$=x^{2}+(3+3) x+3 \times 3$
$=(x+3)(x+3)$
$=(x+3)^{2}$
だから，因数分解しの公式は絶対にマスターしておかないとだめだよ。

因数分解の公式

1．$x^{2}+(a+b) x+a b=(x+a)(x+b)$

$x^{2}+2 a x+a^{2}$ の因数分解

因数分解の公式।を使えばどんな問題でも因数分解できるんだけど，次のような問題の時は別の公式を使うともっと速く答えを求められるよ。
$x^{2}+6 x+9$ を因数分解しよう。

まず，乗法公式2を思い出してみよう。

乗法公式

2．$(x+a)^{2}=x^{2}+2 a x+a^{2}$

公式2のように $x^{2}+6 x+9$ を次のように形を変えてみると
$x^{2}+2 \times 3 \times x+3^{2}$

上の式を公式 $2 「 x^{2}+2 a x+a^{2}$ 」と比べると，$\ulcorner a=3 」$ になっていることがわかるかな。

だから因数分解すると「 $(x+3)^{2} 」$ になるよ。
$x^{2}+8 x+16$ を因数分解しよう。

公式2のように $x^{2}+8 x+16$ を次のように形を変えてみると
$x^{2}+2 \times 4 \times x+4^{2}$

上の式を公式 $2 「 x^{2}+2 a x+a^{2}$ 」と比べると，「 $a=4 」$ になっていることがわかるかな。

だから因数分解すると「 $(x+4)^{2} 」$ になるよ。

因数分解の公式

2．$x^{2}+2 a x+a^{2}=(x+a)^{2}$

この公式が使えるかどうかのチェックポイントは2つ
（1）$x^{2+} \bigcirc x+\triangle$ の \triangle が「何かの数字」を2乗した数になっているか？
\rightarrow なっていた場合（ $x+$ 何かの数字 $)^{2}$ になる可能性あり
（2）$x^{2}+\bigcirc x+\triangle$ の \bigcirc が「何かの数字」の 2 倍になっているか？
\rightarrow なっていた場合 $(x+\text { 何かの数字 })^{2}$ と因数分解できる。
$x^{2}-2 a x+a^{2}$ の因数分解
$x^{2}-8 x+16$ を因数分解しよう。
$8 \times$ の前がマイナスになっているよ。こういうときは乗法公式3をヒントに考えよう。

乗法公式

3．$(x-a)^{2}=x^{2}-2 a x+a^{2}$

公式3のように $x^{2}-8 x+16$ を次のように形を変えてみると
$x^{2}-2 \times 4 \times x+4^{2}$

上の式を公式3「 $x^{2}-2 a x+\alpha^{2}$ 」と比べると，「 $\alpha=4 」$ になっていることがわかるかな。

だから因数分解すると「 ${ }^{(x-4)^{2} 」 に な る よ 。 ~}$

因数分解の公式

3，$x^{2}-2 a x+a^{2}=(x-a)^{2}$

この公式が使えるかどうかのチェックポイントはさっきと同じ2つ
（1）$x^{2}-\bigcirc x+\triangle$ の \triangle が「何かの数字」を2乗した数になっているか？
\rightarrow なっていた場合（ x —何かの数字）${ }^{2}$ になる可能性あり
（2）$x^{2}-\bigcirc x+\triangle$ の \bigcirc が「何かの数字」の 2 倍になっているか？
\rightarrow なっていた場合（x一何かの数字）${ }^{2}$ と因数分解できる。

$x^{2}-\alpha^{2}$ の因数分解

$x^{2}-a^{2}$ の因数分解はもっとも簡単だよ。

乗法公式4を思い出してみよう。

乗法公式

4．$(x+a)(x-a)=x^{2}-a^{2}$
$x^{2}-a^{2}$ になっていた場合，$(x+a)(x-a)$ と因数分解できることがわかるね。

実際に問題を解いてみよう。
$x^{2}-25$ の因数分解だったら
$x^{2}-25$
$=x^{2}-5^{2}$
$x^{2}-a^{2}$ の形になっているから，$(x+a)(x-a)$ と因数分解できるよ。

今回は「 $\alpha=5 」$ だから
$x^{2}-5^{2}$
$=(x+5)(x-5)$

となるよ。

因数分解の公式

4．$x^{2}-a^{2}=(x+a)(x-a)$

因数分解の公式一覧

因数分解の公式4つをもう一度確認しよう。

因数分解の公式一覧

I．$x^{2}+(a+b) x+a b=(x+a)(x+b)$
2．$x^{2}+2 a x+a^{2}=(x+a)^{2}$

3，$x^{2}-2 a x+a^{2}=(x-a)^{2}$
4．$x^{2}-a^{2}=(x+a)(x-a)$

特に大事になってくるのは公式। だから，公式। だけは最低限マスターしておくといいよ。

