「おうぎ形の弧の長さと面積（平面図形）」 をわかりやすく解説

おうぎ形の弧の長さと面積つまずきポイント

つまずきポイント

- 公式が複雑で，見ただけで挫折してしまう
- 公式が「どうしてそうなるのか」分からない
- 「おうぎ形」というだけで苦手意識がある

おうぎ形の弧の長さと面積を身近な話に変えてみよう！

じゃあ，「おうぎ形」とか「弧」とかは一旦忘れて，身近な話で考えてみよう。

> 考えてみよう

太郎くんのクラスは，全部で 40 人の生徒がいるよ。
でも，インフルエンザでみんなお休みになって，2分の1の生徒だけが残ったんだ。 さて，何人の生徒が残っている？

40 人の半分の， 20 人でしょ。
計算で表すと，
$40 \times \frac{1}{2}=20$
ということだね。
もちろん，これが 2 分の 1 でなくて， 4 分の 1 でも同じ考え方でいいよね。
これって，「円」と「おうぎ形」でも同じことなんだよ。
「全部で」というのが「円」のこと。
「残った生徒」が「おうぎ形」のことで考えてみて。

「円」＝「全部」

円というのは，「パーフェクトな状態」のことだよね。 ホールケーキとかピザで例えるなら，「食べる前」の状態。
つまり，全部揃った状態。満タン状態。
さっきのクラスの例えで言うと，「クラス全員の人数」。

「おうぎ形」＝「残ったもの」

おうぎ形というのは，パーフェクトだった円が欠けた状態。
※イメージしやすいように，このページでは おうぎ形のことを「残った部分」という表現をするよ。
ケーキやピザでいうなら，何切れか食べられてしまった状態。
さっきの例えなら，「インフルエンザで何人かがお休みして，残った生徒」のことだね。 この，
「残ったもの」が実際どのくらいの量とか数があるのかは，「もとのパーフェクトな状態 とくらべてどのくらいの割合残っているのか」でもとめられるよね。
クラスで考えた時のように，「もとの生徒の数」とくらべて「半分」残ったから，「残っ た生徒の数」は
40 （全部）$\times \frac{1}{2}$（どのくらい残ったか）$=20$（残った生徒の数）
になるんだよね。
おうぎ形も，
「円（全部）の時の円周」×「残った割合」＝「おうぎ形（残った部分）」の円周」 というように求めることができるんだ。
説明だけだとピンとこないので，例題を解きながら説明していくよ。

おうぎ形の弧の長さと面積を例題で考えてみよう

まずはもとの円（全部）の弧の長さと面積を求める。

クラスの生徒の例えだと，
「クラスの生徒は全部で 40 人」とあらかじめ分かっていたよね。
でも，このおうぎ形の「もともとの円の円周や面積はいくつなのか？」は あらかじめ分かっていないね。
だから，まずは「もともとの円の弧の長さや面積はいくつなのか？」を求める必要がある んだ。
ここで手がかりになるのが，おうぎ形にある「3 cm」という数字。
これって，実はもとの円の半径の部分なんだよね。

ということは，この半径を使えばもとの円の円周も面積も求めることができるね。円周の求め方は 「直径（半径 $\times 2$ ）$\times \pi 」$ 」の \quad で，

$$
3 \times 2 \times \pi=6 \pi \mathrm{~cm}
$$

つまり，もとの円だった時の円周は 6π だね。
円の面積の求め方は 「半径 \times 半径 $\times \pi$ 」なので，

$$
3 \times 3 \times \pi=9 \pi \mathrm{~cm}^{2}
$$

ということになるね。
じゃあ，おうぎ形が，この円の半分だったとしたら？
円周も，面積も，もちろん半分になるよね。
だから円周なら $6 \pi \mathrm{~cm}$ の半分の「 $3 \pi \mathrm{~cm}$ 」になるし，
面積は「 ${ }^{\prime} \pi \mathrm{cm}^{2}$ の半分の ${ }^{\frac{9}{2}} \pi \mathrm{~cm}^{2}$ 」になるね。
4 分の। だったら？
3 分の 2 だったら？

とにかく，
もとの円の円周や面積を求めれば，
もとの円と比べておうぎ形がどのくらい残っているかによって，
おうぎ形の面積や円周も求めることができるんだね。
でも，おうぎ形が「もとの円」のどのくらい残っているのかは，どうやって分かるの？ それが分かるのがおうぎ形の「中心角」なんだ。

中心角を見れば「おうぎ形がもとの円に対してどのくらい残っているか」

 が分かる！おうぎ形が，もとの円にたいしてどのくらい残っているかの割合を求めるには，
円の中心核 360 度に対して，おうぎ形の中心角がどのくらいあるのかで求められるん だ。
例えば，ちょうど半分のおうぎ形の中心角は 180 度。
180 度は， 360 度に対してどのくらいあるかの割合を求めると，
$180 \div 360$
$=\frac{180}{360}$
$=\frac{1}{2}$
90度の場合なら，
$90 \div 360$
$=\frac{90}{360}$
$=\frac{1}{4}$
こうやって，「おうぎ形の中心角」 $\div 360$ をすれば，おうぎ形がどのくらい残っているの かの割合が求められるんだよ。

例題のおうぎ形の中心角は，120度だね。
そうすると，
$120 \div 360$
$=\frac{120}{360}$
$=\frac{1}{3}$
このおうぎ形は，もとの円に対して $\frac{1}{3}$ 残っているということだね。

求めた割合を，円周や面積にかける

そうしたら，あとは「もとの円だったときの円周や面積」に，求めた割合をかけてあげれ ば，おうぎ形の弧の長さや面積が求められるということだね。
もう一度，ひとつひとつ手順を表すと

1．もとの円の円周や面積をもとめる
2．おうぎ形が，もとの円に対して「どのくらい残っているか」をもとめる 3．1に2をかける

例題で考えると，

1．もとの円の円周は 6π
2．おうぎ形は，もとの円に対して $\frac{1}{3}$ 残っている。
3．1に 2 をかけると， $6 \pi \times \frac{1}{3}=2 \pi$
というわけで，弧の長さは $2 \pi \mathrm{~cm}$ だね。
同じように，おうぎ形の面積を求めると， $3 \pi \mathrm{~cm}^{2}$ になるよ。 この作業をいっぺんに表したのが教科書の公式なんだよ。

弧の長さの公式 ： $1=2 \pi r \times \frac{\alpha}{360}$
弧の長さの公式の意味
公式：$l=2 \pi r \times \frac{a}{360}$

弧の長さは，もとの円の円周に，「もとの円に対して おうぎ形が どの位残っているか」
の割合をかけて求めることが出来る！！

おうぎ形の面積の公式 ：$s=\pi r 2 \times \frac{\alpha}{360}$

おうぎ形の面積の公式の意味
 $$
\text { 公式: } S=\pi r^{2} \times \frac{a}{360}
$$

おうぎ形の面積は，もとの円の面積に，「もとの円に対して おうぎ形が どの位残っているか」
の割合をかけて求めることが出来る！！

