二等辺三角形の性質と定理「定義•定理」とは？わかりやすく解説

「定義」とは

数学には色々な用語があるけれど，新しい用語で「定義（ていぎ）」とはどういう意味の用語かを紹介するね。

教科書では，

```
定義とは，ことばの意味をはっきり述べたもの
```

と書かれているんだけれども，なんとなくピンとこないね。

たとえば，身近なことでたとえると，「雨」ということばがあるよね。雨の定義は，「広範囲にわたって空から降ってくる水滴」となるんだ。

辞書で，言葉の下にある「その言葉はどんな意味かを説明しているもの」のイメージかな。数学で「定義」と使う時は，「数学で使われている用語の意味を表すもの」と覚えておこう。

これまでに出てきた数学の用語の定義を少し紹介するね。

用語	定義
偶数	2で割り切れる整数
奇数	2で割り切れない整数
対頂角	2つの直線によって角が作られるとき，向かい合っている角のこと

証明の単元では色々な図形が出てくるけれど，それぞれの図形の定義（その図形は，どういう図形 か）を確認していくから楽しみにしていてね。

二等辺三角形の性質

ここからは二等辺三角形について勉強していくよ。

まずは，二等辺三角形について，上で紹介した「定義」を確認しよう！

```
二等辺三角形の定義 2つの辺が等しい三角形
```

漢字で書いたままの定義「二つの等しい辺の三角形」だね。

次に，二等辺三角形の辺の名前や角の名前についても確認するよ。

底辺

頂角（ちょうかく）長さが等しい2つの辺の間の角
底辺（ていへん）頂角と向かい合う辺
底角（ていかく）底辺の両端の角

小学生で二等辺三角形について勉強した時に，「2つの辺が等しい」以外に非常に大切な性質を勉強したことを覚えているかな？

それは，「2つの角が等しい」という性質だよ。

この性質は，角度の計算問題だけではなく，証明問題でも非常によく使うから忘れずに覚えておこ う！

「定理」とは

次は「定義」に似た用語で「定理（ていり）」について確認するね。

```
定理とは証明されたことがらで，大切なもの
```

言葉の説明だけを見ると，わかるようなわからないような…
ひと言でいうとこれは「性質」のことなんだ。

これまで登場した定理では，

三角形の定理 三角形の内角の和は180 ${ }^{\circ}$

これも定理のlつなんだ。

ちなみに，「定理」については，「定義」を使って証明することができるよ。では早速，二等辺三角形 の定理について確認していこう。

二等辺三角形の底角の定理
二等辺三角形には2つの定理があるんだけれども，1つ目は底角に関する定理について説明する よ。

二等辺三角形の定理（1）二等辺三角形の底角は等しい

この定理について，二等辺三角形の定義「2つの辺が等しい三角形」を使って証明してみよう。

例題

下の図の $\triangle A B C$ が $A B=A C$ の二等辺三角形，辺 $A D$ が $\angle A B C$ の二等分線ならば $\angle A B D=\angle A C D$ となることを証明しなさい。

証明に必要な $\triangle A B D$ と $\triangle A C D$ の図もかいたから，対応する辺や角の対応順を考える時の参考にしてね。
（1）仮定と結論を問題文から見つけよう。
仮定 $\triangle A B C$ が $A B=A C$ の二等辺三角形，辺 $A D$ は $\angle A B C$ の二等分線
結論 $\angle A B D=\angle A C D$
（2）仮定からわかることを書こう。
$A B=A C$
辺 $A D$ が $\angle A B C$ の二等分線だから，$\angle B A C=\angle C A D$
（3）すでに正しいと認められていることがらを図形を見て探そう
上の図を見ると，AD がどちらの図形にも重なっているから，AD＝AD ※ちなみに，ぴったり重なっている辺や角を「○○は共通」と表現するから覚えておこ う！（共通な辺•角は等しいので，と書く場合もあるから，学校で習ったルールで書くよ うにしよう。）
（4）三角形の合同条件のどれに当てはまるかを考えよう。
（1）～③から，「2組の辺とその間の角がそれぞれ等しい」という合同条件に当てはまるこ とがわかるね。

⑤結論が証明されたことを書こう。
今回の問題の結論は，$\angle A B D=\angle A C D$ ということが言えれば OK だから，
「合同な図形の対応する角が等しいので $\angle A B D=\angle A C D 」$
と証明の時に書こう。

```
証明
\triangleABD と }\triangleACDにおいて
仮定から, AB=AC•••1
辺 AD が }\angleABC\mathrm{ の二等分線だから, }\angleBAC=\angleCAD•••(2)
AD は共通•••3
(1), (2), (3)より, 2組の辺とその間の角がそれぞれ等しいから,
\triangleABD \equiv\triangleACD
合同な図形の対応する角は等しいから
\angleABD= }\angleAC
```

これで定理の।つ目の二等辺三角形の底角は等しいことが証明できたよ。
もう اつの定理も同じように証明して確認しよう。

二等辺三角形の頂角の二等分線の定理

二等辺三角形の 2 つ目の定理は，頂角の二等分線に関する定理だよ。
二等辺三角形の定理（2）二等辺三角形の頂角の二等分線は，底辺を垂直に 2 等分する。

この定理についても上と同じように証明をしていくんだけれども，二等辺三角形の底角が等しいことを証明した流れの $\triangle A B D \equiv \triangle A C D$ まで全く同じなんだ。
だから，そこまでは省略して証明をするね。

```
証明
\(\triangle A B D \equiv \triangle A C D\) より
合同な図形の対応する辺は等しいから, BD=CD
\(\angle \mathrm{ADB}+\angle \mathrm{ADC}=180^{\circ}\) なので
\(\angle \mathrm{ADB}=\angle \mathrm{ADC}=90^{\circ}\)
よって, \(\mathrm{AD} \perp \mathrm{BC}\) となる。
```

また, 合同な図形の対応する角は等しいから, $\angle A D B=\angle A D C$

この証明で二等辺三角形の頂角の二等分線は，底辺を垂直に 2 等分することが証明された けれども，もう少し詳しく説明するね。

上の証明で $\mathrm{BD}=\mathrm{CD}$ ということを書いたけれども，これは下の図のように「DがBCの中点」になることを表しているよ。

次に $\angle \mathrm{ADB}=\angle \mathrm{ADC}=90^{\circ}$ がなるのは，一直線は 180° という性質を使っている よ。

ちなみに「定義」「定理」は，証明の中で「すでに正しいと認められていることがら」と して使うことができるから，しっかりと覚えておこう！

二等辺三角形の性質（定義•定理とは）まとめ

－定義とは，ことばの意味をはっきり述べたもの
例：「二等辺三角形」ということばの定義は「二つの辺が等しい三角形」
－定理とは証明されたことがらで，大切なもの
例：「三角形の内角の和は 180° 」は，三角形の定理
－二等辺三角形の定理（1）
二等辺三角形の底角は等しい

－二等辺三角形の定理（2）

二等辺三角形の頂角の二等分線は，底辺を垂直に 2 等分する。

