比例•反比例とは？

$「 y$ は x に比例•反比例する」比例定数の求め方

比例とは

小学校でも比例については勉強したね。
比例っていうのは，
「一方が 2 倍 3 倍になると，もう一方も 2 倍• 3 倍になる関係のこと」だったよね。

イメージしやすいように，身の回りの比例の例を 2 つ紹介するね。

身の回りの比例の例（1）

「リンゴを買う個数」と「リンゴの値段」

八百屋さんで，リンゴを買う時を考えてみよう。
買うリンゴの個数が1個なら，I個分の値段。
リンゴが 2 個（ I 個の 2 倍）なら，値段も 2 個分（ 1 個分の 2 倍）になるね。

一方が 2 倍• 3 倍になると，もう一方も 2 倍• 3 倍になっているね。
だから「リンゴを買う個数と，リンゴの値段」は比例の関係だね。

リンゴの個数と値段は比例の関係

実際に金額を計算してみよう。
リンゴがもし 1 個 1 0 0 円だったら，2個で 200 円， 3 個で 300 円。

「リンゴを買う個数が 2 倍• 3 倍」になったら，ちゃんと「リンゴの値段も 2 倍• 3 倍」 になっているね。

表でも確認してみよう。

表にすると，さらに比例の関係であることがよくわかるね。

さて，小学校で習った比例だけれど，どうしてまた中学校でも学習するのかというと， この「比例の関係」を，中学の数学では「文字」を使って考えるんだ。中学数学では，「文字を使った式」が使えるようになっているからね。

では，この「リンゴを買った個数」と「リンゴの値段」の関係を，文字を使って表してみ よう。

「リンゴのを買った個数」を×，
「リンゴの値段」をyとするよ。

すると，下のような表ができるね。

この表をみると，xとyの関係ってどうなっているかな。
そう，上の段（x）を100倍すると，下の段（y）になっているね。

なので，\times と y の関係は， $\mathrm{y}=100 \times$ と表すことができるんだ。

この式の形をよく覚えておいてね。

では，次の例も見てみよう。

身の回りの比例の例（2）

「水を入れている時間」と「水の深さ」

水道の蛇口をひねった時，1 分で 2 cm ずつ水が入るとするよ。

2 分経ったら水の深さは 4 cm ， 3 分経ったら，水の深さは 6 cm だよね。

「水を入れている時間」が 2 倍• 3 倍になると，「水の深さ」も 2 倍• 3 倍になることが わかるかな。

水を入れる時間と深さは比例の関係

これも，表で確認しよう。

									2倍	3倍
時間 $($ 分 $)$	0	1	2	3	4	5				
深さ (cm)	0	2	4	6	8	10				

表で確認してみても，比例の関係であることがよくわかるね。 それでは，中学生らしく「文字」を使って考えてみよう。

「水を入れる時間」を×，
「水の深さ」をyとするよ。
すると，下のような表ができるね。

今度は，上の段（x）を 2 倍すると，下の段（ y ）になっているね。

なので，x と y の関係は， $\mathrm{y}=2 \times$ と表せる。

さっきのリンゴのケースでは，「 $y=100 x 」 て ゙ ⿱ ⿻ 土 一 𧘇 刂 灬 せ た ね 。 ~$
そして，今度は「y＝2x」。
なんだか形が似ていることに気が付いたかな？

さっきの「 $y=$ 比例の式の形 「 $y=a \times\lrcorner$
$100 \times$ 」とか「 $y=2 x 」 は, ~$ 比例の式の形なんだよ。
×の前の「100」とか，「2」は，そのときどきで数字が変わるよね。 なので，この「そのときどきで変わる数字」をひとまず「a」であらわしちゃうんだ。 そうすると，

比例の式の形は「y＝ax」と表すことができるよ。

このaの部分に，そのときどきでいろんな数字が入るんだね。

では実際に問題に挑戦してみよう。
（問）次の中で，y がxに比例しているものを選びなさい。
ア：$y=2 x$
ィ：$y=\frac{3}{x}$
ウ：$y=2 x+3$
工：$y=2 x^{2}$

答えは「ア」。
「ア」だけが $y=a \times$ の形になっているので正解になるよ。
余裕があったら読んでみよう！
（おまけ：2年生で学習すること）

さっきの水の入れる時間と深さの問題を例に考えよう。
水を入れている時間が「O分」のとき，水の深さは「Ocm」なのはわかるよね。だっ て， 0 分のときは，まだ容器の中に水が入っていないんだから当たり前だよね。

1年生の数学では，「容器が空っぽの状態」からスタートする式しか学習しないけれ ど，2年生になると，「容器の中に，あらかじめ水が入っている状態」からスタート する式を学習したりするよ。

たとえば，「すでに深さ 10 cm の水が入っている容器」に，1 分間に 2 cm ずつ水を入 れた場合，「水を入れている時間」と「水の深さ」はどんな式になるだろう。

答えは，$y=2 x+10$ 。
さっきの式に, 「1 O cm」の「10」が足されるんだね。


```
どうしてこんな話をしたかというと, この「y=2x+10」は, 「一次関数」の式 なんだ。
比例の式は「y=2x」だよね。
とっても似ているよね。
だから, 「比例と一次関数の違いって?」と混乱してしまうことがよくあるんだ。
比例は, 実は「一次関数」の仲間だよ。ただ, 一次関数の「+1 0」のように,
余計な?部分が無いものが「比例」なんだ。
2 年生の数学でもくわしく学習することになるけれど, せっかくだからちょっと
覚えておいてね。
```

比例定数とは

教科書の説明では「一定の数やそれを表す文字を定数と言い，比例の式の中の文字aは定数であり「比例定数」と呼ぶ。」と書かれているね。

「比例定数」なんて，かしこまった言葉で言われると，なんだか難しそうに聞こえるけれ ど，実はすごく簡単なことを言っているだけなんだ。

ここまで学習してきたように，比例は必ず $y=a \times$ の形で表されるんだったよね。この「a」の部分だけが式によって変わるんだから，この「a」の部分ってとても需要だよ ね。（だって，のこりのyと×は変わらないからね）

この「a」のことを「比例定数」つていうんだ。
比例の式の重要な「a」に分かりやすいように名前をつけてあげただけだね。

なぜ「比例定数」という名前なのかというと，「リンゴの例え」では，リンゴを何個買っ てもかならずyは×の「IOO倍」だったよね。

「水の例え」でも，水を何分入れようが，何時間入れようが，かならず y は x の「 2 倍」 だったよね。

2つの例とも，「リンゴを買った数」」とか，「最終的なリンゴの値段」とか，「水を入 れた時間」とか，「水の深さ」つて，そのときどきで変わるよね。

でも，この「100」という数字と「2」という数字はずっと「一定」のまま。
そう，「一定のままの数字」だから「定数」なんだ。

そして，「比例の式の中で，ずっと一定のままの数」だから，「比例定数」だよ。
では，問題でも確認してみよう。
（問）次の比例の式の比例定数をそれぞれ答えなさい。

$$
\begin{aligned}
& \text { ア: } y=2 x \\
& \text { イ: } y=-3 x \\
& \text { ウ }: y=x \\
& \text { エ : } y=\frac{1}{3} x
\end{aligned}
$$

答えを確認しよう。

比例定数は $y=a \times$ の「 $a 」$ だよね。
xの前の係数が「a」にあたるから，それをそのまま答えればOK。

ア： 2
イ：－ 3
ウ：।（xの前には「I」が省略されている）
エ：$\frac{1}{3}$

比例定数の求め方

教科書には「yが x に比例するとき，$y \div x$ で比例定数が求まる」と書かれているよ。比例定数の求め方には「 $y \div x 」$ を計算すればいいということだね。 でも，なぜそうなるかを考えてみよう。

さっきの「水の例」の表をもう一度見てみよう。
「x」を 2 倍したら「 y 」になっているね。つまり「 $y=2 x 」$ と表すことができて，こ の「2」が比例定数だったんだよね。

この「2」という数字は，「y」を「x」で割れば出てくることは分かるかな？
（1）$x=1, ~ y=2$ のところに注目しよう。

$$
\begin{aligned}
& y \div x \\
= & 2 \div 1 \\
= & 2
\end{aligned}
$$

（2）$x=2, ~ y=4$ のところに注目しよう

$$
\begin{aligned}
& y \div x \\
= & 4 \div 2 \\
= & 2
\end{aligned}
$$

（1）のときも（2）のときも比例定数は $y \div x$ で求められているね。

「x」に，ある数をかけた結果が「y」なんだから，「ある数」を求めたいのであれば，「y」を「x」で割ればいいよね。

だから，$y \div x$ で「ある数＝比例定数」が求まるんだね。

では問題に挑戦してみよう。
（問）y は x に比例しており，$x=3$ のとき，$y=9$ になる。
比例定数を求めよ。

比例の比例定数は $y \div x$ で求まるから，

比例定数 $a=9 \div 3=3$ になるね。
「比例定数」なんて難しい言葉に感じるけれど，実際に学習してみるとそんなに難しいこ とではないね。
だけれどここから先，1 年生では「反比例」，2年生は「1次関数」，3年生では「二乗 に比例する関数」というのをやるので，ごっちゃになっちゃう人が多いんだ。

なので，ここでしっかりと押さえておこうね。

反比例とは

反比例も小学校で勉強したと思うよ。
反比例というのは，「一方が 2 倍• 3 倍になると，もう一方は I 2 倍•1 3 倍になる関係 のこと」だったよね。

身の回りの反比例の例を紹介するね。

身の回りの反比例の例

「分ける人数」と「1人分の個数」

みかんが 6 個あったとするよ。 1 人で分けたら，1人分の個数は 6 個になるよね。いわゆ る独り占めってやつだね。

2 人で分けたら，1 人分の個数は3個 3 人で分けたら，1 人分の個数は 2 個

6 人で分けたら，I 人分の個数は1個

表にまとめてみよう。 4 人と 5 人の時は切りよく分けられないので，空欄にしたよ。

分ける 人数 （人）	1	2	3	4	5	6
1 人の 個数 （個）	6	3	2			1

「分ける人数」と「I人分の個数」は反比例の関係であることがよくわかるね。 では，中学生らしく「文字」を使って考えてみよう。

「分ける人数」をx，「1人分の個数」をyとすると次のような表ができるよ。

x	1	2	3	4	5	6
$($ 人）	x	x	x			x
y	6	3	2			1

$$
x \times y=6 \text { になっている }
$$

今度は，上の段（x）と下の段（y）をかけたら「6」になっているね。
$x \times y=6$ を，移項を使って「yを求めるための式」に変えてみよう。
$y=6 \div x$

もう少し整理して
$y=\frac{6}{x}$
という式になるよ。

比例の式の形「 $y=\frac{a}{x} 」$

さっきの $\mathrm{y}=\frac{6}{x}$ がまさに反比例の式の形なんだ。
反比例の式の形は $y=\frac{a}{x}$ と表されるよ。

比例の式と同じで，この「a」にはその式によって色々な数字が入るよ。実際に問題に挑戦してみよう。
（問）次の中で，y が x に反比例しているものを選びなさい。

$$
\begin{aligned}
& \text { ア: } y=2 x \\
& \text { ィ: } y=\frac{3}{x} \\
& \text { ウ: } y=2 x+3 \\
& \text { エ: } y=2 x^{2}
\end{aligned}
$$

答えは「イ」。
「イ」だけが $y=\frac{a}{x}$ の形になっているので反比例の式になっているよ。

反比例の比例定数

これがちょっと紛らわしいところなんだけど，

反比例でも「比例定数」つていうんだ。反比例の比例定数は，反比例の式 $y=a \times$ の「a」のことをいうよ。

余裕があったら読んでみよう！

どうして反比例なのに「比例定数」つていうの？
$y=a \times$ の式を，よーく見てみよう。
これって，実は $y=a \times 1 \times$ と書くこともできるよね。

これって，比例の式「 $y=a x 」$ 」 「 y y は x に比例している」と言うのに対して，「 y
$=a \times 1 \times 」$ は「yは1 \times に比例している」と言うことができるという事なんだ。

たとえるなら，
「私は，ピーマンの入った料理が好き」＝「ピーマンが好き」
という状態が「比例」だったとしたら，

「私は，ピーマンの入った料理が嫌い」＝「ピーマンが嫌い」
という状態が「反比例」だとするよ。

でも反比例の「ピーマンが嫌い」という状態を説明するのに，
「私は，ピーマンの入っていない料理が好き」＝「ピーマンが嫌い」
と言い換えることができるよね。

この感覚とおなじ。

「yはxに比例している」の反対である「yはxに反比例している」は，「yは1 y し に比例している」と言い換えることができるということ。

なので，反比例の状態も「比例」のひとつと考えて，aのことを「比例定数」と呼ぶ， と考えることができるよ。

では，実際に問題を解いてみよう。
（問）反比例の式で比例定数をそれぞれ答えなさい。

$$
\begin{aligned}
& \text { ア: } y=\frac{2}{x} \\
& \text { ィ: } y=-\frac{3}{x} \\
& \text { ウ }: y=\frac{1}{x}
\end{aligned}
$$

答えを確認しよう。

反比例の比例定数は $y=\frac{a}{x}$ の「 $a 」$ だから分子にある数を見たらいいよ。

ア： 2
ィ：－ 3
ウ：｜

反比例の比例定数の求め方

教科書には「yが \times に反比例するとき，$x \times y$ で反比例の比例定数が求まる」と書かれて いるよ。

反比例の比例定数の求め方は $x \times y$ で計算すればいいんだけど，なんでそうなるかを考え てみよう。

「みかんを分ける例」の表を確認すると，xとyをかけたら比例定数である「6」になっ ているのがわかるね。

x	1	2	3	4	5	6
（人）	x	x	x			x
y	6	3	2			1
（個）	6				1	

$$
x \times y=6 \text { になっている }
$$

このように，x と y で反比例の比例定数が求まるよ。

では，問題を解いてみよう。
（問）y は x に反比例するとき，$x=3$ のとき，$y=9$ になる。比例定数を求めよ。

反比例の比例定数は×とyをかけたものだったから，

比例定数 $a=3 \times 9=27$ になるね。

まとめ

比例や反比例とは，\times と y がどういう関係なのか。比例定数とは何で，どうやって求めら れるのか。

比例•反比例はごっちゃになってしまいがちだから下にまとめたよ。

比例と反比例
－比例の式は「 $y=a x 」$
比例定数「a」は「y $\div x$ 」で求めることができる
－反比例の式は「 $y=a / x 」$
比例定数「a」は「x×y」で求めることができる

自然数に○が含まれるかどうか迷ったら

「象やキリンのイラストのカード」だけを使って，「象がO匹」という状態を説明できるか どうか考えよう！

「説明できない」ということは，「自然数」ではないということ！

