

反比例のグラフと表から式を求めよう (手順をわかりやすく解説)

表を使った反比例の式の求め方

それでは、まずは「反比例の関係を表す表」から、反比例の式を求める方法について説明 していくよ。

次の表はxとyが反比例の関係であることを表しているよ。

だって \times が2倍、3倍になると、yは $\frac{1}{2}$ 倍、 $\frac{1}{3}$ 倍になっているからね。

X	- 4	- 3	- 2	- 1	0	1	2	3	4
у	- 1	$-\frac{4}{3}$	- 2	- 4	×	4	2	4 3	1

では、この反比例の表から式を求めてみよう。

反比例の式は $y = \frac{\sigma}{v}$ で表されるんだったよね。

αは「比例定数」といって、数字が入るね。

aを求めることができたら、反比例の式で表すことができるね。

ちなみに、反比例でも比例定数っていうからね。反比例定数なんてないよ。

の解説ペ 「反比例の比例定数ってなんだっけ?」と不安になったら、反比例についての解説ページ をもういちど確認しよう。

$$y = \frac{\alpha}{x}$$
 の比例定数 α を求める

反比例の式 $y = \frac{\alpha}{\nu}$ を割り算を使って表すと次のようになるよ。

 $y = a \div x$

今回αを求めたいから、「α=○○」という形に変えるよ。

y = a ÷ x ←左辺と右辺をひっくり返すよ

a÷x=y ←左辺のxを消すために、両辺にxをかけるよ

 $a = y \times x \leftarrow \lceil y \times x \rfloor は \lceil x \times y \rfloor と同じ$

 $a = x \times y$

 $zor_{\alpha} = x \times y$ $zvr_{\alpha} > zvr_{\alpha} > zvr_{\alpha$

反比例の比例定数「α」は×とyをかければ求めることができるということだよね! これさえ分かれば、反比例の式を求める問題はマスターしたも同然だよ。

さっきの表に戻ろう。

Х	- 4	- 3	- 2	- 1	0	1	2	3	4
у	- 1	$-\frac{4}{3}$	- 2	- 4	×	4	2	4 3	1

反比例の比例定数αは、xとyをかけたら求まるんだったよね。

$$x = 1$$
 のとき、 $y = 4$ だから、 $\alpha = x \times y = 1 \times 4 = 4$

$$x = 3 \text{ oct}, y = 4 3 \text{ ths}, a = x \times y = 3 \times 4 3 = 4$$

$$x = 4 \text{ obs}, y = 1 \text{ ths}, a = x \times y = 4 \times 1 = 4$$

$$x = -1$$
 のとき、 $y = -4$ だから、 $a = x \times y = (-1) \times (-4) = 4$

$$x = -30000$$
, $y = -43000$, $x = -3000$, $x = -3000$, $x = -3000$

それぞれ計算した結果、xがいくつのときでも反比例の比例定数 a = 4 になっているね。

全部を計算したけれど、どこかIつだけのxとyで計算しても求めることができるよ。

$$y = \frac{a}{x}$$
の a に代入する

反比例の比例定数が求まったら、 $y = \frac{\alpha}{x}$ の α に代入しよう。 さっきの問題では、比例定数は $\alpha = 4$ なので次のような式になるよ。

$$y = \frac{a}{x}$$
に $a = 4$ を代入して

$$y = \frac{4}{x}$$

これが今回求めたい反比例の式だよ。

反比例の式が $y = \frac{a}{x}$ になることさえ覚えていれば楽勝だね。

反比例の表から簡単に式を求める方法についてまとめたよ。

反比例の表から簡単に式を求める方法

- ・表を縦に見て、xとyの値をかける
- ・かけて求まった答えを $y = \frac{a}{x}$ の a に代入する

反比例の表から式を求める練習

(I)下の表は反比例を表している。yをxの式で表しなさい。

X	- 3	- 2	- 1	0	1	2	3
у	- 1	$-\frac{3}{2}$	- 3	×	3	3 2	1

表を縦に見て、χとγの値をかけたものが比例定数αになるから、

x = 1 のとき y = 3 という値に注目しよう。 $x \times y = 1 \times 3 = 3$ だから、 $y = \frac{3}{3}$ という反 比例の式になるよ。

(2) yはxに反比例しているとき、x=5のとき、y=3である。yをxの式で表しな さい。

この問題は表ではないんだけど、あえて表にすると次のようになるよ。

Χ	5
у	3

表を縦に見て、xとyの値をかけたものが比例定数aになるから、

x = 5のとき y = 3なので、 $x \times y = 5 \times 3 = 15$ になる。だから $y = \frac{15}{x}$ という反比例 の式になるよ。

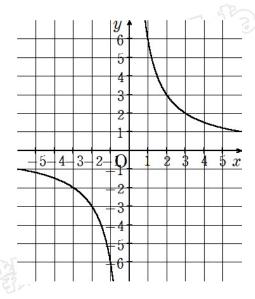
反比例の表から式を求める別の方法

さっきまでは $y = \frac{\alpha}{x} \epsilon \alpha = x \times y$ という形にして、比例定数 α を求めてきたけど、 $y = \frac{a}{x} (x \times y) \times x \times y$ をそのまま代入する方法もあるよ。

さっきの問題を例にやってみよう。

					V - 6) (A	11/ ~	
X	- 3	- 2	- 1	0	1	2	3
у	- 1	$-\frac{3}{2}$	- 3	×	3	3 2	1

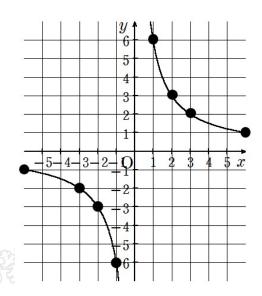
x = 1 のとき y = 3 という値に注目しよう。 $y = a \times c \times x = 1$ 、 y = 3 を代入すると 3 = a I3 = a


となり、比例定数が3になることがわかるね。あとはいつもどおり $y = a \times c$ に比例定数 a = 3 を代入して、b = 3 × という式になるよ。

反比例のグラフから式を求める方法

反比例の表から式を求めることができたら、グラフから式を求めるのは楽勝だよ。違いは グラフの座標を読み取るだけ。

では実際に問題をやってみよう。


(例)次のグラフは反比例を表している。このグラフの式を求めなさい。

「キリのよい」座標を読み取ると(I, 6)(2, 3)(3, 2)(6, I)(- I, - 6)(- 2, - 3)(- 3, - 2)(- 6, - I)の8つ。

反比例の式 $y = \frac{\alpha}{x}$ の比例定数 α は x と y を かけたら求まるんだったから、 β と γ を かけたら α が求まるよ。

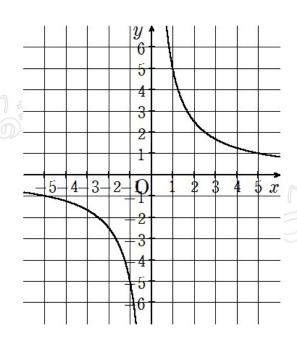
反比例のグラフは(I, 6)を通るので、比例定数は $a = x \times y = I \times 6 = 6$ になるよ。

反比例の式 $y = \frac{\alpha}{x}$ に $\alpha = 6$ を代入して $y = \frac{6}{x}$ という反比例の式ができあがるね。

座標を読み取ることができて、反比例の式が $y = \frac{a}{x}$ になることさえ覚えていれば楽勝だね。

反比例のグラフから式を求める方法についてまとめたよ。

反比例のグラフから式を求める方法


- ・グラフで「キリの良い点」のxとyを読み取る
- ・×とyの座標をかける
- ・かけて求まった答えを $y = \frac{a}{y}$ の a に代入する

ゆみねこの教科書

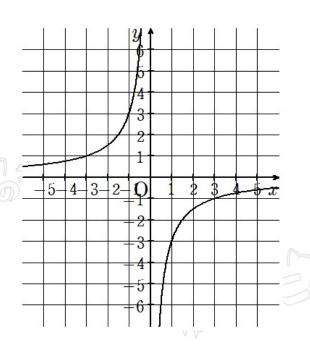
反比例のグラフから式を求める練習

(I)下のグラフは反比例を表している。yをxの式で表しなさい。

「キリのよい」座標を読み取ると(1,5)(5,1)(-1,-5)(-5,-1)の 4つ。

反比例の式 $y = \frac{\alpha}{x}$ の比例定数 α は x と y をかけたら求まるんだったから、 4 つの座標のう ち、Iつの座標のxとyをかけて求めてみよう。

かるなるこの教育量 反比例のグラフは(1,5)を通るので、比例定数は $a = x \times y = 1 \times 5 = 5$ になるよ。


反比例の式 $y = \frac{a}{x}$ に a = 5 を代入して

 $y = \frac{5}{x}$ という反比例の式ができあがるね。

ゆみねこの教科書

(2)下のグラフは反比例を表している。yをxの式で表しなさい。

「キリのよい」座標を読み取ると(I, -3)(3, -1)(-1, 3)(-3, 1)の4つ。

反比例の式 $y = \frac{\alpha}{x}$ の比例定数 α は x と y をかけたら求まるんだったから、 4 つの座標のうち、 1 つの座標の x と y をかけて求めてみよう。

反比例のグラフは(3,-I)を通るので、比例定数は $a=x\times y=3\times (-$ I)=-3になるよ。

反比例の式
$$y = \frac{a}{x}$$
に $a = -3$ を代入して

 $y = -\frac{3}{x}$ という反比例の式ができあがるね。

