「yはxの二乗に比例する」関数とは？二次関数との違い・比例定数

y は×の二乗に比例する関数

「関数」とは，「xの値が1つ決まる」と，「yの値もただlつ決まる」という関係のこと だったよね。

今まで，比例や反比例，一次関数などの関数を学習してきたね。

今まで学習してきた関数

- 比例 $y=a x$
- 反比例 $y=a x$
- 1次関数 $y=a x+b$

3年生の数学で学習するのは，「二乗に比例する関数」だよ。

二乗に比例する関数の身近な例

「二乗に比例する」と言われても，ちょっとピンとこないね。実際の例をもとに説明していくよ。

たとえば，「坂道で球を転がしてみた時」を考えてみよう。
坂道で球を転がすと，だんだんスピードアップして転がり落ちていく（加速していく）よ ね。

坂を転がし始めてから，1秒ごとの球の位置を記録したら次のようになったよ。

x 秒	0	1	2	3
$y m$	0	0.2	0.8	1.8

この表を見ると
xが2倍，3倍，4倍…となるとyの値は4倍，9倍，16倍…となっているよね。

じゃあxとyの関係はどうなるだろう？
xとyだけの関係で考えると，
$x=1$ のときは，$y=0.2(y=0.2 x)$
$x=2$ のときは，$y=0.8(y=0.8 x)$
$x=3$ のときは，$y=1.8(y=1.8 x)$
…となってしまって，比例定数が定まらないね。
つまり，これは比例の関係ではないということだね。

そこで，さっきの表に「 $x^{2} 」$ を付け足してみるよ。

x	0	1	2	3
x^{2}	0	1	4	9
y	0	0.2	0.8	1.8

$x^{2}=1$ のときは，$y=0.2\left(y=0.2 x^{2}\right)$
$x^{2}=4$ のときは，$y=0.8\left(y=0.2 x^{2}\right)$
$x^{2}=9$ のときは，$y=1.8\left(y=0.2 x^{2}\right)$

比例定数が定まったね。
つまり，この表を見るとyの値はx²の値の0．2倍になっていることがわかるよね。

x	0	1	2	3	
x^{2}	0	1	4	9	9
y	0	0.2	0.8	1.8	

だから
$y=0.2 x^{2}$
と表すことができるんだよ。
${ }^{\prime} y=0.2 x^{2} 」$ という式からもわかるけれど，「yはxの二乗に比例する」関数になっているよね。

二乗に比例する関数の形

$y=0.2 x^{2}$ は「yはxの二乗に比例する」関数だったよね。
「yはxの二乗に比例する」関数の形を紹介しよう。

y はxの二乗に比例する関数

- $y=a x^{2}$ で表すことができる
- 「a」のことを比例定数と呼ぶ
- 比例定数「a」は ${ }^{\circ}=\frac{y}{x^{2}}$ で求めることができる ※ただし，この式は「y＝ax ${ }^{2} 」$ の両辺を「 $x^{2} 」$ で割ったら出てくるので，絶対に覚える必要は ないよ。

「2次関数」と「yはxの二乗に比例する関数」の違い

2年生で「1次関数」を学習したから，3年生で学習したこの「y $=a x^{2} 」$ のことは「2次関数」とは言 わないの？と思う人も多いかもしれないね。

「2次関数」と「yはxの二乗に比例する関数」の違いを説明するよ。

2次関数と二乗に比例する関数の違い

- 2次関数は $「 y=a x^{2}+b x+c 」$
- y はxの二乗に比例する関数は ${ }^{\circ} y=a x^{2} 」$
y はxの二乗に比例する関数「 $y=a x^{2} 」$ っていうのは，
2次関数 ${ }^{\circ} y=a x^{2}+b x+c 」 の$ 式で，$b=0, ~ c=0$ になる特別な場合のことなんだよ。

こんな感じのイメージだね。

2次関数という集まりの中に，「yはxの二乗に比例する関数」がいるということだね。 だから，「yはxの二乗に比例する関数」は，2次関数といっても間違いではないけれど，中学3年生 でやるのは，$b=0, ~ c=0$ の特別な場合（ $=$ 比例している）だけだよ。

$y=a x^{2}$ の比例定数の求め方

y は x の二乗に比例する関数 $「 y=a x^{2} 」$ の比例定数 $「 a 」$ の値を次の問題で求めてみよう。
（1）
I辺が $x \mathrm{~cm}$ の正方形で，高さが 4 cm の四角柱の体積が $\mathrm{ycm}{ }^{3}$ になった。 y をの式で表せ。 また比例定数を答えなさい。

四角柱の体積は

体積＝底面積 \times 高さ
で求まるから，
$y=x \times x \times 4$
$y=4 x^{2}$

と表すことができるよね。
だから比例定数は「4」になるね。
（2）
y は x^{2} に比例し，$x=2$ のとき $y=12$ になる。 y を x の式で表せ。

この問題はよく入試問題や定期試験にでるよ。

まず，「yはx²に比例し」という文章を見たら，
「yはxの二乗に比例する関数だから，答えの式は，$y=a x^{2}$ になるな」と反応できるようにしよう。

これができたら，あとは楽勝だよ。
$y=a x^{2}$ に $「 x=2$ のとき $y=12$ 」を代入しよう。
$12=a \times 2^{2}$
$12=4 a$
$a=3$

比例定数 $「 a 」$ が「 $3 」$ とわかったので，「 $y=a x^{2} 」$ の式に代入しよう。
答えの式は
$y=3 x^{2}$

と求めることができるよ。

「yはxの二乗に比例する関数」まとめ

- 「yはxの二乗に比例する関数」の式は，「y＝ax²」で表すことができる
- 「a」のことを比例定数と呼ぶ
- 比例定数 $\ulcorner a\lrcorner$ は $a=\frac{y}{x^{2}}$ で求めることができる
- y は x の二乗に比例する関数 $\left\ulcorner y=a x^{2}\right\lrcorner$ とは，2次関数 $\left\ulcorner y=a x^{2}+b x+c\right\lrcorner$ の式で， $b=0, ~ c=0$ になる特別な場合のことである

