平方根の考えを使って

「二次方程式を効率よく解く方法」を解説

$a x^{2}+c=0$ の形をした 2 次方程式の解き方

二次方程式を解くっていうのは「解」を求めることだと説明したね。

二次方程式を解くとか，「解」を求めるというのは，「3x22－48＝0」のような二次方程式 の「x」に，どんな数字を入れたら式が成り立つかを考えることだったね。

「いくつが入るかな？？」とひとつひとつ当てはめていって考えてもいいけど，解き方を知っていればすぐに解を求めることができるよ。

ここでは， $3 x^{2}-48=0$ のような $a x^{2}+c=0$ の形をした二次方程式の効率の良い解き方を紹介 するね。

じつは，「 $a x^{2}+c=0 」 の$ 形をした二次方程式は「平方根の考え」を使って簡単に解くこ とができるんだよ。

例えば，次のような 2 次方程式を解いていこう。
$3 x^{2}-48=0$
$3 x^{2}-48=0$ の解き方
（1）数字の項「－48」を右辺に移項する
$3 x^{2}-48=0$
$3 x^{2}=48$
（2）x^{2} の係数「3」で両辺をわる
$3 x^{2}=48$
$3 x^{2} \div 3=48 \div 3$
$x^{2}=16$
（3）$x^{2}=$ ○の形になっているので，x の値を求める。

$$
x^{2}=16
$$

2乗して16になる数は
$x=-4, ~ x=4$
$a x^{2}+c=0$ の形をした二次方程式の練習問題
（1）$x^{2}-16=0$ を解きなさい。
（1）数字の項「－16」を右辺に移項する
$x^{2}-16=0$
$x^{2}=16$
（2）x^{2} の係数で割る
\rightarrow 今回，x^{2} の係数は「I」だから，割っても数字は変わらない。
（3）$x^{2}=$ ○の形になっているので，x の値を求める。
$x^{2}=16$
2乗して16になる数は
$x=-4, ~ x=4$
（2）$x^{2}-7=0$ を解きなさい。
（1）数字の項「－7」を右辺に移項する
$x^{2}-7=0$
$x^{2}=7$
（2）x^{2} の係数で割る
\rightarrow 今回，x^{2} の係数は「I」だから，割っても数字は変わらない。
（3）$x^{2}=\bigcirc$ の形になっているので，x の値を求める。
$x^{2}=7$
2乗して16になる数は整数では存在しないね。そういうときは平方根の記号「ルート」を使うんだったね。
$x=-\sqrt{7}$ ，$x=\sqrt{7}$
（3） $3 x^{2}-10=0$ を解きなさい。
（1）数字の項「－10」を右辺に移項する
$3 x^{2}-10=0$
$3 x^{2}=10$
（2）x^{2} の係数「3」で両辺をわる
$3 x^{2}=10$
$3 x^{2} \div 3=10 \div 3$
$x^{2}=\frac{10}{3}$
（3）$x^{2}=\bigcirc$ の形になっているので，x の値を求める。
$x^{2}=\frac{10}{3}$
2乗して $\frac{10}{3}$ になる数は
$x=-\frac{\sqrt{10}}{\sqrt{3}} \sqrt{ }, ~ x=\frac{\sqrt{10}}{\sqrt{3}}$

ただ，分母にルートがきてはいけなかったから有理化しよう。
$\frac{\sqrt{10}}{\sqrt{3}}$ は分母と分子に $\sqrt{3}$ をかけて
$\frac{\sqrt{10}}{\sqrt{3}}$
$=\frac{\sqrt{10} \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}}$
$=\frac{\sqrt{3} 3}{3}$
$a x^{2}+c=0$ の形をした二次方程式は，$x^{2}=\bigcirc$ の形に変形出来たら解を求めることができる ね。

$(x+a)^{2}=b$ の形をした二次方程式の解き方

$(x+a)^{2}=b$ の形をした二次方程式も，さっきと同じように平方根の考えを使って簡単に解 くことができるんだよ。

例えば，次のような二次方程式を解いていこう。
$(x+3)^{2}=16$

ぱっと見，右辺の $(x+3)^{2}$ を展開しちゃいそうだよね。 ただ，展開すると計算がすご一く大変になるんだ。
（1）$(x+3)^{2}=16$ の「x＋3」を「A」とおいて解を求める
$A^{2}=16$
Aは2乗して16になる数だから，
－$A=-4$
－A＝4
が解になるよね。
（2）「 A 」を ${ }^{2} x+3 」 に も と ゙ す ~$
「 $A 」$ 」 $「 x+3 」 の こ と た ゙ っ た か ら ~$
「A」を「x＋3」にもどそう。
－$x+3=-4$
－$x+3=4$

（3）x を求める

$x+3=-4$ の場合
$x=-4-3$
$x=-7$
$x+3=4$ の場合
$x=4-3$
$x=1$
$(x+3)^{2}=16$ の解は
$x=-7$ ，।
であることが求められたね。

二次方程式の解の確かめ

二次方程式の解が求まったら，本当にあっているか不安だよね。
そんなときは解の確かめを行おう。

さっき解いた
$(x+3)^{2}=16$
の解は $x=-7$ と $\mathrm{x}=1$ だったよね。
$x=-7$ と $x=1$ を
$(x+3)^{2}=16$ に代入して式が成り立つかを確認しよう。
もしx＝－7だったら
（左辺）は次のようになるよね。
$(x+3)^{2}$
$=(-7+3)^{2}$
$=(-4)^{2}$
$=16$
$=($ 右辺 $)$
（左辺）と（右辺）が等しくなるからx＝－7を代入して式が成り立つことがわかったね。

もしx＝1だったら
（左辺）は次のようになるよね。
$(x+3)^{2}$
$=(1+3)^{2}$
$=4^{2}$
$=16$
$=($ 右辺 $)$
（左辺）と（右辺）が等しくなるからx＝1を代入して式が成り立つことがわかったね。
$x=-7$ のときも $x=1$ のときも成り立ったから，
$(x+3)^{2}=16$ の解は
$x=-7, ~ 1$ だと自信をもって言えるね。

二次方程式の解の確かめ

求まった解を，もとの方程式に代入して式が成り立つか確認すればよい。

$(x+a)^{2}=b$ の形をした二次方程式の練習問題

$(x+3)^{2}=5$ を解きなさい。
$\underline{(1)(x+3)^{2}=5 の 「 x+3 」 を 「 A 」 と お い て ~}{ }^{2}$ 解を求める
$\mathrm{A}^{2}=5$
Aは2乗して5になる数だから，
－$A=-\sqrt{5}$
－$A=\sqrt{5}$
が解になるよね。
（2）「A」を「x＋3」にもどす
「 $A 」$ 」て「 $x+3$ 」のことだったから
「 A 」を ${ }^{\prime} x+3$ 」にもどそう。
$\cdot x+3=-\sqrt{5}$
－$x+3=5--\sqrt{ }$
（3）\times を求める
$x+3=-\sqrt{5}$ の場合
$x=-\sqrt{5}-3 \leftarrow$ これ以上計算できないよ。
$x+3=\sqrt{5}$ の場合
$x=\sqrt{5-3} \quad \leftarrow$ これ以上計算できないよ。
$(x+3)^{2}=5$ の解は
$x=-\sqrt{5}-3, ~ \sqrt{5}-3$
であることが求められたね。

$x^{2}+a x+b=0$ の二次方程式の解き方

$x^{2}+a x+b=0 み$ たいな形の二次方程式をどのようにして解くのかを説明するね。
$x^{2}+a x+b=0$ を $(x+O)^{2}=\Delta$ みたいな形にできたら，さっきの解き方で解を求められるよ ね。

このようにして解く方法を「平方完成」つて呼ぶよ。

$(x+O)^{2}=\Delta$ の形に変形する（平方完成）

（問）$x^{2}+8 x+7=0$ の解を求めなさい。
$x^{2}+8 x+7=0$ を $(x+O)^{2}=\Delta$ のような形にしよう。
まず，左辺の数字の項を右辺に移項しよう。
$x^{2}+8 x+7=0$
$x^{2}+8 x=-7$
ここまでは大丈夫だよね。
$x^{2}+8 x=-7$ を $(x+O)^{2}=\Delta$ のような形にするために
両辺にある数を足すんだ！
ある数とは「16」
なんでわからないかもしれないけど，両辺に「16」を足してみよう。
$x^{2}+8 x=-7$
$x^{2}+8 x+16=-7+16$
$x^{2}+8 x+16=9$
ここで，$x^{2}+8 x+16 っ て(x+O)^{2}$ の形にできるんだけど，O に当てはまる数はわかるか な？

答えは，$x^{2}+8 x+16$ って $(x+4)^{2}$ を展開したもの
だからさっきの式は次のようになるよ。
$x^{2}+8 x+16=9$
$(x+4)^{2}=9$
$(x+O)^{2}=\Delta$ のような形にできてしまえば，ここからはさっきと同じように解を求められ るね。
$\underline{(1)(x+4)^{2}=9 の 「 x+4 」 \text { を「 } A 」 \text { とおいて解を求める }}$
$\mathrm{A}^{2}=9$
Aは2乗してのになる数だから，
－ $\mathrm{A}=-3$
－A＝3
が解になるよね。
（2）「A」を「x＋4」にもどす
「 A 」って「 ${ }^{2}+4$ 」のことだったから
「A」を「x＋4」にもどそう。
－$x+4=-3$
－$x+4=3$
（3）メを求める
$x+4=-3$ の場合
$x=-3-4$
$x=-7$
$x+4=3$ の場合
$x=3-4$
$x=-1$
$(x+4)^{2}=9$ の解は
x＝－7，－－
であることが求められたね。

$x^{2}+a x+b=0$ の二次方程式の解き方のポイント

$x^{2}+a x+b=0$ の 2 次方程式を $(x+O)^{2}=\triangle$ の形にできてしまえば，あとは簡単に解が求めら れるよね。
だから，$(x+O)^{2}=\Delta$ の形にすることが重要なんだ。
$(x+O)^{2}=\triangle$ の形にするポイントは次の通りだよ。

```
(x+O)}\mp@subsup{)}{}{2}=\triangle\mathrm{ の形にするポイント
x}+ax+b=0の両辺に「aを2で割った数の2乗」を足すこと。
```

実際にいくつを足したらいいかを考えてみよう。
$x^{2}+8 x+7=0$ の両辺に足す数
$x^{2}+8 x+7=0$
だったら，
「 +7 」を移項して
$x^{2}+8 x=-7$
になるよね。
aを2で割った数の 2 乗を考えよう

- $x^{2}+8 x=-7$ の \quad は「8」
- aを2で割った数 $8 \div 2=4$
- aを2で割った数の 2 乗 $4^{2}=16$

だから，両辺に16を足せばいいんだよ。
両辺に「16」を足すと
$x^{2}+8 x+16=-7+16$
$x^{2}+8 x+16=9$
になるよね。

ここで $x^{2}+8 x+16$ は $(x+4)^{2}$ を展開した式だから $x^{2}+8 x+16=9$ $(x+4)^{2}=9$
と $(x+O)^{2}=\Delta$ の形にできたね。
$x^{2}+4 x+3=0$ の両辺に足す数
$x^{2}+4 x+3=0$
だったら，
「＋3 」 を移項して
$x^{2}+4 x=-3$
になるよね。
aを2で割った数の 2 乗を考えよう

- $x^{2}+4 x=-3$ の \quad は「4」
- aを2で割った数 $4 \div 2=2$
- aを2で割った数の 2 乗 $2^{2}=4$

だから，両辺に4を足せばいいんだよ。
両辺に「4」を足すと
$x^{2}+4 x+4=-3+4$
$x^{2}+4 x+4=1$
になるよね。
ここで $x^{2}+4 x+4$ は $(x+2)^{2}$ を展開した式だから
$x^{2}+4 x+4=1$
$(x+2)^{2}=1$
と $(x+O)^{2}=\Delta$ の形にできたね。

「平方根を利用した二次方程式の解き方」まとめ

$\cdot a x^{2}+c=0$ の形をした二次方程式を平方根の考え方を使って解く方法 （1）移項して，$x^{2}=O$ の形にする
（2）平方根の考えを使ってを $\mathrm{x}^{2}=\mathrm{O}$ の形から \times の値を求める
－$x^{2}=O$ の形で，2乗してOになる数は整数が存在しない場合は，平方根の記号「ルー ト」を使う
－$(x+a)^{2}=b$ の形をした二次方程式は，「 $\mathrm{x}+\mathrm{a}$ 」を「 A 」とおいて解を求める
$\cdot(x+O)^{2}=\Delta$ の形にするポイント
$x^{2}+a x+b=0$ の両辺に「aを2で割った数の 2 乗」を足す

