「三角形の相似条件」

 言い方や合同条件との違い・証明問題例を紹介

 言い方や合同条件との違い・証明問題例を紹介}

「相似な図形」の解説ページでは，「相似な図形」とは，同じ形のまま拡大や縮小した図形だということを学習したね。

それでは，2つの三角形が「相似な図形」かどうかを判断するには，どういうところに注目すればよいのかな？

結論からいうと，2つの三角形が「相似な図形」であるためには，下の3つの条件があっ て，どれか1 つの条件を満たしていれば，その 2 つの三角形は相似な図形だということが できるんだ。

三角形の相似条件

- 3 組の辺の比がすべて等しい
- 2 組の辺の比とその間の角がそれぞれ等しい
- 2 組の角がそれぞれ等しい

この 3 つの条件について，ひとつずつ「どういう条件なのか」を紹介していくよ。

3 組の辺の比がすべて等しい

まずひとつめの条件「3組の辺の比がすべて等しい」。

どういうことかというと，2つの三角形があったとき，その2つの三角形同士の辺の比
 べての組み合わせで同じ比になっている，ということなんだ。

たとえば下の 2 つの三角形の 3 組の辺の比はすべて $2: 3$ になっているから相似といえる よ。

でもなぜ， 3 組の辺の比がすべて等しいと，相似ということができるのだろう。 たとえば，次のような三角形を考えてみよう。

すべての辺の長さを 2 倍してみよう。すると次のような三角形 $A^{\prime} B^{\prime} C^{\prime}$ になるよ。

$\triangle A B C と \triangle A^{\prime} B^{\prime} C^{\prime} こ の 2$ つの三角形は相似になるか考えよう。

以前学習した「相似の中心」の考えを使って，相似の中心と対応する点を結ぶと次のよう になるよ。

この図をみると，
OA：OA＝1：2
$O B: O B=1: 2$
$O C: O C^{\prime}=1: 2$

になっているから，2つの三角形は「相似の位置にある」といえるよね。
「相似の位置にある」と呼ぶための条件は覚えているかな？

「相似の位置にある」と呼ぶための条件

- 2つの図形の対応する点を結んだ直線が相似の中心で交わる
- 相似の中心から対応する点までの距離の比がすべて等しい

2 つの図形の対応する「点 $A B C 」$ 」「点 $A^{\prime} B^{\prime} C^{\prime} 」 を$ 結んだ直線が相似の中心で交わってい るよね。そして，相似の中心から対応する点までの距離の比はすべて।：2で等しいよ ね。

だから，この 2 つの図形は「相似の位置にある」ね。

「相似の位置にある」ということは，つまり2つの三角形は「相似な図形」ということが できるよね。

相似条件（1）「3組の辺の比がそれぞれ等しい」

2 つの三角形の対応する 3 組の辺の比が，すべて同じ比になっているということ

【たしかめ】
3 つの辺の長さを 2 倍にする（ 3 組の辺の比が，すべて।：2 になる）
$\rightarrow 2$ つの図形の対応する点を結んだ直線が相似の中心で交わる
$\rightarrow 2$ つの図形は相似の位置にある（つまり相似である）

3 組の辺の比が全部同じになっていたら，2つの三角形は相似になるってことだね。

2 組の辺の比とその間の角がそれぞれ等しい

2 つめの条件「 2 組の辺の比とその間の角がそれぞれ等しい」。

とういうことかというと，2つの三角形があったとき，その 2 つのあ三角形同士の辺の比 が，2組同じで，さらにその 2 組の辺の間の角度の大きさが同じになっている，というこ となんだ。

たとえば下の 2 つの三角形の 2 組の辺の比は $2: 3$ になっていて，その間の角度は 70° になっているよね。 だからこの 2 つの三角形は相似といえるよ。

でもなぜ，三角形の 2 組の辺の比が等しく，その 2 組の辺の間の角度が同じだと相似であ るといえるのだろう。

たとえば，次の三角形を考えてみよう。

点Bをスタート地点として，この三角形のABとBCの長さを 2 倍するよ。

$\triangle \mathrm{ABC}$ と $\triangle \mathrm{A}^{\prime} \mathrm{BC}^{\prime}$ ，この 2 つの三角形が相似になるか考えよう。

今回は相似の中心が点Bになっているね。
そして
$A B: A^{\prime} B=1: 2$
$C B: C^{\prime} B=1: 2$

になっているね

相似の位置にあると呼ぶための条件は，2つの図形の対応する点を結んだ直線が相似の中心で交わることだから，この2つの三角形ABCとA＇BC＇は「相似の位置にある」といえるよね。つまり「相似な図形」ということができるね。

相似条件（2）「2組の辺の比とその間の角がそれぞれ等しい」

2つの三角形の対応する2組の辺の比が，同じ比になっていて，その 2 組の辺の間にある角の大 きさがそれぞれ同じということ

【たしかめ】
1 つの頂点をもとに，その両側の2つの辺の長さを 2 倍にする（ 2 組の辺の比が，
どちらも1：2になる）
$\rightarrow 2$ つの図形の対応する点を結んだ直線が相似の中心（もとにした頂点）で交わる $\rightarrow 2$ つの図形は相似の位置にある（つまり相似である）

この条件で注意するのは，「2組の間の角度が」等しくなるということが必要だという事。

なぜなら，2組の間の角度が相似の中心になっているからだね。

2組の角がそれぞれ等しい

3つめの条件は「2組の角がそれぞれ等しい」。

どういうことかというと，2つの三角形があったとき，その2つの三角形同士の角が2つ大きさが一緒であれば，その 2 つの三角形は「相似な図形」ということができるんだ。

たとえば下の2つの三角形を見てみよう。
2つの角度（ 70° と 20° ）がそれぞれ同じで，相似になっているよ。

でもなぜ，2組の角の大きさが同じだと，相似といえるのだろう。

たとえば，下の図のように，2つの角が 40° と 60° の三角形で考えてみよう。

角度を変えずに辺の長さを変えてみると次のようになるよ。

\downarrow

\downarrow

2つの角度が同じ三角形を3つ書いたけど，すべて相似であることがわかるかな。

なぜならAもA＇もA＂も角度は
$180^{\circ}-\left(60^{\circ}+40^{\circ}\right)=80^{\circ}$ になって

3つの角度が同じになるよね。

三角形は，3つの角度が同じであれば形が変わらないので，「相似」だといえるよ。

相似条件（3）「2組の角がそれぞれ等しい」

2つの三角形の対応する2組の角が，それぞれ同じ大きさになっているということ

【たしかめ】
2つの角の大きさがきまれば，のこりの1つの角の大きさも決まる
$\rightarrow 2$ 角が同じということは，つまり3角が同じということ
\rightarrow 3角が同じ三角形は，同じ形になる（つまり相似である）

この「2組の角がそれぞれ等しい」という条件はよく問題になって出てくるよ。

合同条件と相似条件の違いに着目してみよう

今回学習した「相似条件」と，2年生の数学で学習した「合同条件」は，なんだかとても似ている ね。

相似条件を新たに学習したことで，これらがごちゃ混ぜになってしまって，混乱してしまう子もいるか もしれないね。

ここで，「合同条件」と「相似条件」の違いをはっきりしておこう。

着目している

ポイント

3組のOOが等しい 3 組の辺がそれぞれ等しい	3組の辺の比がすべて等しい	
2辺と1角に着目	2組の辺とその間の角がそれぞれ等しい	2組の辺の比とその間の角がそ
2つの角に着目	I組の辺とその両端の角がそれぞれ等しい	2組の角がそれぞれ等しい

表にまとめてみると，合同条件と相似条件がとても似ていることがさらによく分かるね。

どちらも条件は3つ。
さらに，着目しているポイントも同じなんだ。

3組の○○が等しい

「合同条件」と「相似条件」どちらも，2つの三角形の，3組の「なにか」が等しいというのがポイント になっているところが同じだね。

あとは，それが合同条件の場合は「辺」で，相似条件の場合は「辺の比」となっているところが違う部分だね。

「合同」は2つの三角形がぴったり重ならなくてはならないから，「辺」そのものが同じでなくてはい けない。
それに対して，「相似」は同じ形であればいいので，「辺の比」が同じであればいいということだね。

2辺と1角に着目

これも，「合同条件」と「相似条件」どちらも，2組の辺とその間の角に着目しているところが同じだ ね。

あとはやっぱりそれが合同条件の場合は「辺」で，相似条件の場合は「辺の比」となっているところ が違う部分だね。

2つの角に着目

この条件のポイントは，合同と相似でははっきり違うところがあるね。

それは，合同条件では2角の間の辺も等しくなくてはいけないけれど，相似条件では2角だけが同 じであれば，辺のことは気にしなくてよいというところ。

どうしてかというと，三角形は，2角が決まれば自動的に残りのl角も大きさが決まるよね。なぜな ら，内角の和は1 80° と決まっているからだね。

つまり，2角が同じであれば，それは「3角とも等しい」ということになるんだ。

そして，三角形は，3つの角の大きさが決まっていると，出来上がる形はたったひとつなんだよ。 つまり，3角とも等しければ，2つの三角形は同じ形になる（相似になる）というわけなんだ。

だから，相似条件の場合は，「2角が等しい」だけでOKなんだね。

相似条件の言い方について

相似条件の言い方は，これまでに説明したとおり

- 3組の辺の比がすべて等しい
- 2組の辺の比とその間の角がそれぞれ等しい
- 2組の角がそれぞれ等しい

という言い方だね。

少し長くて覚えづらいかもしれないけれど，証明問題で相似条件を使うときは，この言い方どおりに書く必要があるので，頑張って覚えよう！

相似条件の言い方についての補足

相似条件の言い方には，以下のように別の言い方もあるよ。
－「3組の辺の比がすべて等しい」
\rightarrow 三辺比相等（さんぺんひそうとう）
－「2組の辺の比とその間の角がそれぞれ等しい」
\rightarrow 二辺比挟角相等（にへんひきょうかくそうとう）
－「2組の角がそれぞれ等しい」
\rightarrow 二角相等（にかくそうとう）

けれど，これらは現在，教科書では使われていないんだ。
テストや試験などでは，この言い方で答えると減点されてしまう場合もあるとのことなので，注意しよう。

相似な三角形の証明問題に挑戦しよう

テストでは，相似条件を使って2つの三角形が相似であることを証明する問題が出ることもあるよ。 どんな問題が出てくるのか，どうやって証明をすればよいのか紹介するよ。

相似の証明問題।

図の $\triangle \mathrm{ABC}$ は $\angle \mathrm{BAC}=90^{\circ}$ の直角三角形である。頂点 A から辺 $B C$ に垂線を下ろしその交点をDとする。
$\triangle A B C$ 的 $\triangle D B A$ を証明しなさい。

まず，三角形 $\triangle A B C と \triangle D B A に$ 分けて考えよう。

左と右の三角形で角度が同じところがあるよね。

LBは2つに分ける前には重なっているから等しくなるよね。（合同で学習した「共通」）

$\triangle \mathrm{ABC}$ と $\triangle D B A$ を見ると，「赤丸の角度」と「直角」が等しいから

相似条件「2組の角がそれぞれ等しい」をクリアするね。相似条件をクリアしたから2つの三角形は相似になることがわかるね。

きちんとした文章で証明すると次のようになるよ。
$\triangle \mathrm{ABC}$ と \triangle DBAにおいて

仮定より $\angle B A C=\angle B D A=90^{\circ}$

共通な角は等しいので $\angle B=\angle B \quad \cdots(2) \leftarrow 「 \angle B$ は共通」でもOK
（1）（2）より，2組の角がそれぞれ等しいから
$\triangle A B C \backsim \triangle D B A$

相似の証明問題2

下の図で $\triangle A O D \backsim \triangle C O B を$ 証明しなさい。

対頂角は等しいから赤丸の部分の角の大きさが等しくなるよね。

$\triangle A O D と \triangle C O B を$ 分けて考えよう。

※ $\triangle \mathrm{AOD}$ は $\triangle \mathrm{OBC}$ に向きを合わせて回転させているよ。

対応する辺の比を考えよう
$A O: C O=3: 6=1: 2$
$D O: B O=4: 8=1: 2$

2組の辺の比がI：2になっていることがわかるね。

さらに，2組の辺の間の角が等しいよね。

なので，三角形の相似条件「2組の辺の比とその間の角がそれぞれ等しい」をクリアしているので，「相似な図形」であるということがわかるね。

きちんとした文章で証明すると次のようになるよ。

```
\triangleAOD と\triangleCOBについて
仮定から,
AO:CO=3:6=1:2
\[
\mathrm{DO}: \mathrm{BO}=4: 8=1: 2 \quad \cdots \text { (2) }
\]
対頂角は等しいので，
\(\angle \mathrm{AOD}=\angle \mathrm{COB} \cdots(3)\)
（1）（2）（3）より，
2組の辺の比とその間の角がそれぞれ等しいので，
\(\triangle A O D \backsim \triangle C O B\)
```


三角形の相似条件 まとめ

- 3組の辺の比がすべて等しい
- 2組の辺の比とその間の角がそれぞれ等しい
- 2組の角がそれぞれ等しい

