円周角とは？「円周角の定理」を例題を使ってわかりやすく解説

円周角とは

円周角っていうのは，円周上にできる角度のことだよ。

上の図で $\angle A P B の こ と を \widehat{A B}$ に対する円周角っていうんだよ。円周角は円周の上にできる角ってことをまずは覚えておこう。

これは円周の上に角ができていないから円周角とは言わないよ。
じゃあ，Pの位置が円の中心Oに来たら円周角って言えるかな？

これは「円周角っていえる？」

これは中心に角ができているよね。このときの $\angle \mathrm{AOBO}$ ことを中心角って呼ぶよ。

1年生の時に勉強したと思うけど，3年生でも大事になるからね。

1つの弧に対する円周角の大きさ

円周角とは何かがわかったところで，ここからが本題だよ。
円周角には大切な性質があるんだ。

下の図のように，円周上に点Aと点Bを取ろう。

$\widehat{\mathrm{AB}}$ に対する円周角をたくさん書いてみると「ある性質」が見えてこないかな？

$\widehat{\mathrm{AB}}$ に対する円周角 $\angle \mathrm{APB}$ の大きさがすべて一定（同じ）になっているよね。

まとめると円周角には次のような性質があるんだ。

円周角の定理（1）

1 つの弧に対する円周角の大きさは一定
$\angle A P B=\angle A P^{\prime} B=\angle A P^{\prime \prime} B$

円周角の性質にはもう一つ大事なものがあるから紹介するね。

円周角とその弧に対する中心角の関係

2つ目の円周角の性質は「円周角と中心角の関係」だよ。

結論は次の通り

円周角の定理（2）

1つの弧に対する円周角の大きさは，その弧の中心角の大きさの半分
$\angle \mathrm{APB}=\frac{1}{2} \angle \mathrm{AOB}$

例えば，$\angle \mathrm{AOB}$ が 60° だったら $\angle \mathrm{APB}$ は 30° になるってことだよ。

なんで中心角の半分が円周角になるのかを考えていこう。

中心角の半分が円周角になる理由

POを結んで，「 $\widehat{A B}$ に対する円周角 $\angle A P B 」$ 」 2 つに分けよう。

ここで次の長さは円の半径だから等しくなるよね。
$O A=O B=O P$

そうすると，色の付けた \triangle OAPと $\triangle O B P は 二$ 等辺三角形ってことになるね。

二等辺三角形の底角は等しくなるから，次のようになるよ。

最後に三角形の外角の性質を使おう。

三角形の外角の性質

三角形の外角は，隣り合わない2つの内角をたしたものと等しい

$\triangle A O P$ に注目しよう。
OPを延長して，三角形の外角の性質を使うと，
中心角の左側は $a+a=2 a$ になるよ。

$\triangle B O P$ に注目しよう。
三角形の外角の性質を使うと，
中心角の左側は $b+b=2 b に な る よ 。 ~$

ということは，中心角 $\angle A O B$ の大きさは $2 a+2 b$ と表すことができるんだ。

最後に $\widehat{A B}$ に対する中心角と円周角の大きさを比べてみよう。

- 中心角 $\angle A O B=2 a+2 b$
- 円周角 $\angle A P B=a+b$
\rightarrow 中心角の半分が円周角になることが説明できたね。

だから次の性質が成り立つってことだよ。

円周角の定理（2）

1 つの弧に対する円周角の大きさは，その弧の中心角の大きさの半分
$\angle \mathrm{APB}=\frac{1}{2} \angle \mathrm{AOB}$

円周角の定理

円周角の定理は次の通りだよ。問題を解くときに必ず必要な知識だからしっかりマスターしよう。

円周角の定理
$\cdot 1$ つの弧に対する円周角の大きさは一定

$$
\angle A P B=\angle A P^{\prime} B=\angle A P^{\prime \prime} B
$$

$\cdot 1$ つの弧に対する円周角の大きさは，その弧の中心角の大きさの半分 $\angle A P B=\frac{1}{2} \angle A O B$

最初に紹介した「1つの弧に対する円周角の大きさは一定」という性質がなぜ成り立つかは説明 していなかったけれど，
「।つの弧に対する円周角の大きさは，その弧の中心角の大きさの半分」の性質を使えば説明でき ちゃうよ。

1 つの弧に対する円周角の大きさが一定になる理由

1つの弧に対する円周角の大きさは，その弧の中心角の大きさの半分だったから，

もし，$\widehat{\mathrm{AB}}$ に対する中心角がl 00° だったとしよう。
ことき，$\widehat{\mathrm{AB}}$ に対する円周角はすべて50 ${ }^{\circ}$ になるよね。
$\angle A P B=\angle A P^{\prime} B=\angle A P^{\prime \prime} B=50^{\circ}$

だから「1つの弧に対する円周角の大きさは一定」になるんだよ。

円周角の問題

円周角の定理を使って問題を解いていこう。

「1つの弧に対する円周角の大きさは，その弧の中心角の大きさの半分」だったよね。
この問題では中心角が 100° だから，円周角×は100 $\div 2=50^{\circ}$ と求まるね。

$\angle P も \angle Q も \widehat{A B}$ に対する円周角だから $\angle P=\angle Q$ になるよね。 だから，$x=60^{\circ}$ と求められるよ。

「初めて見る図形だな」と感じるかもしれないけど，
$\angle A O B は \widehat{A B}$ に対する中心角で，
求めたいxは $\widehat{A B}$ に対する円周角
なのがわかるかな？

ということは，中心角 100° の半分が円周角になるから，$x=50^{\circ}$ が答えだよ。

円周角の定理さえ知っていれば楽勝な問題だったね。ただ，次の問題は頭を使うと思うよ。

「中心を通らない」円周角の問題

「中心を通らない」 場合の円周角の問題はどうやって解けばいいんだろう？と困ってしまうという意見が多かったので，ここで紹介するね。

次の点は円周を8等分した点である。×の角度を求めなさい。

今までの問題と比べると中心も書いていないし，角度も書いていないから難しく感じるよね。 このまま眺めていても何も進まないから，中心Oをとって次のように赤線で結ぼう。
$\widehat{A B}$ は点2つ分だから，中心角は 90° になるよね。

なぜなら
8つ分で 360°
1 つ分は $360^{\circ} \div 8=45^{\circ}$
2つ分だから $45^{\circ} \times 2=90^{\circ}$

12

次にCとDを次のように緑線で結ぼう。
「1つの弧に対する円周角は中心角の半分」だったから，
$\angle \mathrm{C}=90^{\circ} \div 2=45^{\circ}$ と求まるね。

次にADを結ぶと，$\triangle A C D は 二$ 等辺三角形になっているよね。
二等辺三角形の底角は等しくなるから，
$\angle A と \angle D$ の大きさは等しいよ。

$\triangle \mathrm{ACD}$ の内角の和は 180° だから，$\angle \mathrm{A}$ の角度は

$$
\begin{aligned}
& 180^{\circ}-45^{\circ}=135^{\circ} \\
& 135^{\circ} \div 2=67.5^{\circ} \quad \text { 底角は等しいから } \div 2 \text { をしているよ。 }
\end{aligned}
$$

と求められるね。

最後に平行線の錯角は等しいから，$x=67.5^{\circ}$ と求まったね。

