円周角の定理を使った相似の証明 （円と交わる直線でできる図形）

円周角の定理は，どんなことに利用できるだろう？
ここでは，円と交わる直線でできる図形が相似であることを，円周角の定理を使って証明 するよ。

また，相似であることを利用して，図形の辺の長さを答える問題の解き方も紹介するよ。

円の内部に点Pを取った場合

円の内部に，点Pを取って，Pを通る2つの直線を引いたとするよ。 そして，その直線と円の交点どうしを結んでみるよ。

すると，このような 2 つの三角形が円の中にできるんだ。
実はこの 2 つの三角形は相似になるんだよ。

では，円周角の定理を使ってこの 2 つの三角形が相似であることを証明していくよ。

下の図で $\triangle \mathrm{APD} \leadsto \triangle \mathrm{BPC}$ になることを証明しなさい。

結論から先に言うと，相似条件は
2 組の角がそれぞれ等しいになるよ。

では，「2組の角」とはどこなのかを考えよう。

円周角の定理
「।つの弧に対する円周角の大きさは一定」という性質を使うと
$\widehat{\mathrm{AB}}$ に対する円周角は等しいから
$\angle A D P=\angle B C P \quad$ ••①

CDに対する円周角は等しいから
$\angle D A P=\angle C B P \cdots$（2）

（1）（2）より，2組の角がそれぞれ等しいので
$\triangle A B P \backsim \triangle B C P$

ここでは円周角の定理を2回使ったけれど，1回にすることもできるんだ。 なぜかというと，対頂角が等しいから，$\angle A P D=\angle B P C に な る か ら ね 。 ~$

次の図のような「2組の角」とすることもできるよ。

相似の証明はこれで終わりなんだけど，相似であることからわかることは何か考えてみよう。

相似からわかること
2つの図形が相似であることからわかることは何だろう？

相似な図形の性質を思い出してみよう。

相似な図形の性質

相似な図形の対応する辺の長さの比はすべて等しい。
相似な図形の対応する角の大きさはそれぞれ等しい。

この性質を使うと次の2つのことがわかるよ。

相似な図形の対応する辺の長さの比はすべて等しい。
$\rightarrow A P: B P=A D: B C=D P: C P$

相似な図形の対応する角の大きさはそれぞれ等しい。
$\rightarrow \angle A P D=\angle B P C, ~ \angle A=\angle B, ~ \angle D=\angle C$

相似であることから長さを求める問題

円と交わる直線でできる図形（今回は三角形）が相似であるということは，次のように図形のl辺 の長さがわからない場合でも，相似な図形の性質を使って求めることができるね。

$\triangle A D P \backsim \triangle B C P て ゙, ~$ 対応する辺の比は等しいから，
$A P: B P=D P: C P$

数字を代入して

$3: x=5: 4$

比例式を解いて×を求めよう。
$3: x=5: 4$
$x \times 5=3 \times 4$
$5 x=12$
$x=\frac{12}{5}$

円の外部に点 P を取った場合

おなじく点Pを取って，Pを通る2つの直線を引くんだけれど，今度は点Pが円の外部にある場合に ついて考えていこう。

円の外部に点Pを取って， P を通る 2 つの直線を引いたとするよ。 そして，その直線と円の交点どうしを結んでみるよ。

すると，このような2つの三角形が円の中にできるんだ。
この 2 つの三角形も相似になるんだよ。

では，円周角の定理を使ってこの2つの三角形が相似であることを証明していくよ。

結論から先に言うと，相似条件は
2組の角がそれぞれ等しいになるよ。

では，2組の角ってどこなのかを考えよう。

円周角の定理
「।つの弧に対する円周角の大きさは一定」という性質を使うと
$\widehat{\mathrm{CD}}$ に対する円周角は等しいから
$\angle \mathrm{PAC}=\angle \mathrm{PBD} \quad \cdots(1)$

$\angle P は$ どちらの三角形にもあるから，
CP は共通 \cdots（2）

（1）（2）より，2組の角がそれぞれ等しいので
$\triangle A C P \backsim \triangle B D P$

相似の証明はこれで終わりなんだけれど，相似であることからわかることは何か考えてみよう。

相似からわかること
2つの図形が相似であることからわかることは何だろう？

相似な図形の性質を思い出してみよう。

相似な図形の性質

相似な図形の対応する辺の長さの比はすべて等しい。
相似な図形の対応する角の大きさはそれぞれ等しい。

この性質を使うと次の2つのことがわかるよ。

相似な図形の対応する辺の長さの比はすべて等しい。
$\rightarrow A C: B D=C P: D P=P A: P B$

相似な図形の対応する角の大きさはそれぞれ等しい。
$\rightarrow \angle A=\angle B, ~ \angle A C P=\angle B D P, ~ \angle A P C=\angle B P D$

相似であることから長さを求める問題

円と交わる直線でできる図形（今回は三角形）が相似であるということは，今回も図形のl辺の長 さがわからない場合に，相似な図形の性質を使って求めることができるね。

$\triangle A C P \backsim \triangle B D P て ゙, ~$ 対応する辺の比は等しいから，
$\rightarrow C P: D P=P A: P B$

数字を代入して

$4: x=10: 8$

比例式を解いて×を求めよう。
$4: x=10: 8$
$x \times 10=4 \times 8$
$10 x=32$
$x=\frac{16}{5}$

方べきの定理

今回学習した内容は，高校生になって「方べきの定理」という名前で再登場するんだよ。

方べきの定理は少し前まで中学3年生で習う内容だったんだけど，今は高校l年生の内容になっ ているよ。

方べきの定理とは次の通り。

方べきの定理
（1）PA：$P C=P D: P B$

（2）$P A: P D=P B: P C$

方べきの定理が成り立つことの証明だけれど，今回学習した「円と交わる直線でできる図形」が相似になることで説明できるよね。

高校生で習う「方べきの定理」はなんとなく知っておくと便利かもしれないよ。

